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ABSTRACT
Understanding data distributions is one of the most fundamental
research topic in data analysis. The literature provides a great deal
of powerful statistical learning algorithms to gain knowledge on
the underlying distribution given multivariate observations. We are
likely to find out a dependence between features, the appearance
of clusters or the presence of outliers. Before such deep investi-
gations, we propose the folding test of unimodality. As a simple
statistical description, it allows to detect whether data are gathered
or not (unimodal or multimodal). To the best of our knowledge,
this is the first multivariate and purely statistical unimodality test.
It makes no distribution assumption and relies only on a straight-
forward p−value. Through real world data experiments, we show
its relevance and how it could be useful for clustering.

CCS CONCEPTS
• Mathematics of computing → Multivariate statistics; Non-
parametric statistics; Exploratory data analysis;

KEYWORDS
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1 INTRODUCTION
Given a multidimensional dataset of numerical attributes, an impor-
tant question is to understand the “grouping behavior” of the data
points. This question is traditionally answered by clustering algo-
rithms. “Grouping behavior” being an ill-defined concept, clustering
algorithms answer a more precise question : they determine groups
(clusters) of data points that are similar, while being different from
the data points of the other groups. Sometimes, one may not need
such a detailed result : a more basic “grouping behavior” question
can be to determine if all the data points make one single, coherent
group or not.

In statistical terms, this is formulated as determining if the distri-
bution of the data points is unimodal or not. Per se, unimodality test
is a first information about the data, as it tells that the data points
cannot be obviously separated into distinct groups. In a medical
experiment, this would for example tell that the patients all reacted
in a similar way, and that no group of patients deviated significantly
from the others. Unimodality can then be seen as a building block
for clustering algorithms: first, it can be used as a low-cost test to
determine if running a clustering algorithm is necessary or not.
Second, it can be used to improve clustering results, for example to
help in parameter estimation.

Unimodality tests exist in the literature (for example the dip
test [13] or the Silverman test [22]), however they are restricted to
one dimensional data. Up to now, there exists no purely statistical
unimodality test able to tackle multi-dimensional data without dis-
tribution assumption. One may be tempted to use unidimensional
unimodality tests on each dimension of multidimensional data (in a
way similar to [17]), however the simple example of Figure 1 shows
the limits of such an approach. On the bottom left side, one can see
that the bidimensional data is bimodal. However, its projection of
the X (top) and Y (right) axis are perfectly unimodal, preventing
to detect the multimodality of that dataset with unidimensional
unimodality tests.
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Figure 1: Unidimensional test fails in 2D

Our main contribution is to propose the first statistical unimodal-
ity test designed for multidimensional data. Our approach relies
on a novel descriptive statistics for (multidimensional) data, that
provides a measure of its unimodality character (level of unimodal-
ity). The proposed approach keeps the same elegant properties as
well-known unimodality tests like dip: it is independant from the
distribution of the data and has only one parameter (a p−value
threshold to tune the confidence in the results). We provide an
algorithm for computing our test and show that it can be adapted
to the streaming context through an incremental version.

The outline of the paper is as follows: in Section 2, we present
related work on unimodality tests. We then describe our folding
test of unimodality in Section 3, and its experimental validation in
Section 4. Section 5 concludes the paper.



2 RELATEDWORK
Unimodality tests. Many statistical tests have been proposed in

the literature and Stoepker gave recently a nice survey of them [23].
There are two kinds of tests: testing unimodality versus bimodality
and testing unimodality versus multimodality. Once we know that
a distribution is k-modal, many algorithms can be used to learn
this distribution from a few samples [3, 4].

To test the “unimodality character” of a distribution, the main
approaches aim at estimating the distribution. They include his-
tograms, kernel density estimates and mixture models.

Silverman’s Test is a parametric test that uses the bandwidth
of the kernel density estimate to test multimodality. A sufficiently
large bandwidth gives a smooth unimodal estimate. If we need
a large amount of smoothing to find an unimodal estimate, this
indicates multimodality. This test has several drawbacks [10, 23]
even if we know that the input distribution is a mixture of gaussians.
Some corrections have been proposed in [10] and a procedure to
use non-gaussian kernels is given in [9].

The Excess Mass Test of Müller et al. [18] tests unimodality
versus bimodality. The idea is to estimate the excess mass of the
modes which can be seen as the area between the density f (x) and
a level L. The test compares the excess mass under unimodal and
bimodal assumptions (through a statistics noted ∆). Actually, only a
simple histogram is needed to estimate the density. Some properties
about the distribution of ∆ have been discovered by Cheng and
Hall [1] leading to a bootstrap procedure to compute p−values.

The Dip Test by Hartigan and Hartigan [13] measures the dis-
tance between the empirical cumulative distribution function (ecdf)
and the set of the unimodal distributions U. The cdf of the set U are
well characterized: they are convex on an interval ]−∞, xl ], then
constant on [xl , xu ] and finally concave on [xu ,+∞[. In short, the
dip of an empirical cdf F corresponds roughly to the distance (with
infinity norm) between F and the set U, i.e:

dip(F ) = d∞ (F ,U) = min
U ∈U
∥F −U ∥∞ .

In [13], the uniform distribution is considered as the least fa-
vorable unimodal distribution. For an empirical cdf Fn , the dip
test compares dip(Fn ) with the quantiles of dip(Un ) where Un is
the ecdf of n iid uniform random variables (these quantiles can
be pre-computed with Monte-Carlo simulations). The dip test re-
ports a p−value p which is the probability to have an ecdf Un with
dip(Un ) > dip(Fn ). The common threshold α = 0.05 is used to
make the decision: if p < α the ecdf Fn is probably multimodal.
This statistics and the test which results from it are rigorously de-
tailed in [13] and a good analogy is given in [17]. Even if the excess
mass and the dip statistics are equivalent [1] the latter is the most
commonly used statistics.

The main drawback of these tests is that they are restricted to
real valued random variable (dimension 1). Moreover they need to
estimate the distribution (density or cdf) and may require several
passes over the data. Some multivariate extensions have been pro-
posed like the RUNT test [12] or the MAP test [20]. Unfortunately,
these methods rely on the construction of several minimal spanning
tree and the use of expensive optimization steps. So they are far
more complex than our purely statistical approach.

Usage and related fields. Testing unimodality is not an end in
itself. On the contrary, it may be used as a tool for related purposes.
Particularly, some clustering algorithms use such approaches to
find relevant groups of data. In [17], the dip statistics is used to
find clusters in noisy data (skinny-dip algorithm). The authors idea
is to find all the bumps in the ecdf because they represent “high”
density regions. This information comes precisely from the dip
computation. As the dip cannot be computed in the multivariate
case, the authors apply it on each dimension, with the issue we
raised before.

In [15], Kalogeratos and Likas present a combination of the dip
statistics with the k−means algorithm (dip-means algorithm). More
precisely, the dip test is performed on the pairwise distances of
the points within a cluster. Indeed, a cluster is acceptable if it is
unimodal (unimodality assumption). If k−means provides a cluster
which is not unimodal, dip-means re-run the algorithm assuming
an additional cluster (with an initial state carefully chosen).

Other approaches to estimate the k of k−means exist but they are
likely to run the clustering algorithm several times with different
numbers of cluster so as to optimize a predefined criterion [14].
Examples of criteria are the Bayes Information Criterion (BIC), the
Akaike Information Criterion (AIC), the Minimum Message Length
(MML) [7], the Minimum Description Length (MDL) [11] or the
Gap Statistics [24].

We may think that these tasks are similar with testing unimodal-
ity but they are slightly different. First, clustering is stronger be-
cause it provides the groups of data while unimodality testing
decides whether data are gathered within a single group or not.
However clustering needs more information: the number of clusters
and/or some parameters to define the similarity between the obser-
vations. Thus, unimodality testing may be viewed as a macroscopic
description of the data while clustering inspects it deeper.

Definition of unimodality. As presented above, unimodality is
well-defined in dimension 1. In a few words, a distribution is uni-
modal iff the cdf is first convex, then flat, and finally concave. Un-
fortunately this definition does not generalize in higher dimen-
sions. Thus, several unimodality notions have been developed but
in nonequivalent ways. They are rigorously detailed in [5].

In our work, unimodality refers to star unimodality (def 2.1 of
[5]). Simply speaking, a density f is unimodal about the modem if
f decreases with the distance tom.

3 CONTRIBUTION
This section presents our theoretical contribution. First we give
the general intuition of our test of unimodality (§3.1). The next
part (§3.2) deals with the mathematical formulation. It allows us
to develop theoretical results (§3.3), leading to our folding test of
unimodality (§3.4 and §3.5). Finally we deal with the incremental
computation of the required statistics for the test (§3.6).

Notations. In the next parts we will use the following notations:
∥ . ∥ denotes the euclidean norm. In the general case, X is a random
vector of Rd (d ∈ N∗), we note E[X ] ∈ Rd its expected value. We
assume that X is 3−integrable: it means that for all its components
Xi , E[X 3

i ] exists. We write Σ ∈ Rd×d its covariance matrix (we may
use VarX in dimension 1). We assume that Σ is non-degenerated
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Figure 2: Folding mechanism for univariate distribution

(so it is invertible). If A ∈ Ra and B ∈ Rb are two random vectors,
Cov (A,B) ∈ Ra×b = E[(A − E[A])(B − E[B])T ] denotes their co-
variance. When X is a real valued random variable, we use also the
common centered momentsMk (X ) = E[(X − E (X ))

k ].
The proposed algorithms may use the theoretical distribution

of a random variable X , so we may use E[X ],VarX etc. but obvi-
ously they are valid on a given sample of n observations (drawn
independently from the distribution ofX ). In this case, the common
estimators have to be used:

E[Z ] ≃µZ =
1
n

n∑
i=1

Zi Var(Z ) ≃
1
n

n∑
i=1
(Zi − µZ )

2 (dim. 1)

Cov(A,B) ≃
1
n

n∑
i=1
(Ai − µA) · (Bi − µB )

T (so Σ(Z ) = Cov(Z ,Z )) .

Thus, if f (X ) is a function applied on the theoretical random
variable X , f (X1 . . . ,Xn ) denotes its sample version (computed
through the estimators given above).

3.1 General intuition
In this section, we present the general intuition of our approach
aimed at testing whether a distribution is unimodal or not.

Univariate case. Here we restrict the description of our approach
to univariate distributions. The generalization will be made in the
next paragraph.

Let us have a look at a bimodal density (figure 2a). In this case, the
variance is likely to be “high” because the two modes make the data
far from the expected value. Our idea is the following: if we fold up a
mode to the other (with respect to the right pivot s∗), the resulting
density (figure 2b) will have a far lower variance. Intuitively, this
phenomenon will not appear for unimodal distributions (actually
not with the same amplitude).

Let us sum up the approach: (1) find the right pivot s∗, (2) fold
up the distribution along s∗, (3) compute the variance of the folded
distribution and (4) compare it with the initial variance.

More formally, if we assume we get the pivot s∗, the folding step
is performed with the transformation X 7→ |X − s∗ |, finally we will
compute the folding ratio:

φ(X ) =
Var |X − s∗ |

VarX
.

folded variance

initial variance

Higher dimensions. How can this approach be generalized? Ac-
tually, the transformation made on the distribution (the folding)

is very similar except that the absolute value are replaced by the
euclidean norm. Then we will consider Var ∥X − s∗∥ where X is a
random vector of Rd and s∗ ∈ Rd is the pivot.

The figure 3 gives an empirical example of the foldingmechanism
in two dimensions. Given a trimodal distribution (figure 3a), and the
right s∗, the folding X 7→ ∥X − s∗∥ turns the multi-modal bivariate
distribution into a univariate distribution (figure 3b) which is likely
to have a “low” variance. But obviously we have to mention about
which reference this variance is low.

s∗

(a) Initial distribution (b) Folded distribution

Figure 3: Folding mechanism in dimension 2

The variance, which is (in dimension 1) the squared deviation of
a random variable from its mean, is replaced by E

[
∥X − E[X ]∥2

]
in higher dimensions (it corresponds to the trace of the covariance
matrix). Indeed, in the unimodal case this expected value will be
much lower than in the multimodal case. Thus, the folding step will
potentially have more impact in the latter. Finally, the folding ratio
is generalized through:

φ(X ) =
Var ∥X − s∗∥
E

[
∥X − E[X ]∥2

] .
The pivot s∗. Until this part, we have assumed to get the right

pivot s∗, i.e allowing the folding mechanism to significantly reduce
the variance. Here we give more details about this pivot. Our goal
is to find whether the variance may be significantly reduced by
folding. So, the natural way is to find the pivot which cuts down
the variance the most, which is (when it exists):

s∗ = argmin
s ∈Rd

Var ∥X − s ∥.

This pivot is well-defined in dimension 1 but not in the general case
(the minimum is not necessarily reached in higher dimensions) but
we will try to get around this problem. An unimodal example in
R2 is given below (figure 4).
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Figure 4: Impact of the pivot location

In the figure 4a, we draw a sample from a multivariate normal
distribution (which is unimodal). Moreover, we choose three dif-
ferent pivots s1, s2 and s3 and we plot the histogram of the folded
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observations ∥X − s1∥, ∥X − s2∥ and ∥X − s3∥. In this case, we may
notice that s1 seems to reduce the variance the best (so it may be
the best pivot s∗). Actually, in the unimodal case, the best pivot s∗
is likely to be close to the mode although in the multimodal case, it
is likely to stand “between” the modes.

3.2 Formal approach
The previous paragraph introduced our main idea. Here, we develop
it more formally. We introduce the function vX defined by

vX : R
d → R
s 7→ Var ∥X − s∥.

By definition, vX is lower-bounded by 0, so we can define the
folding ratio as below

φ(X ) = inf
s ∈Rd

Var ∥X − s∥
E

(
∥X − E[X ]∥2

) . (1)

Thus, the computation of φ(X ) requires a minimization step,
which is expensive. The ideal would be to have an expression of
s∗ = argmins ∈Rd vX (s). Unfortunately, its existence is not clear
because vX can be minimum to the infinity (we have noticed this
divergence on some concrete and non absurd configurations).

In our approach, we aim to find a pivot even if the real one is not
defined. Obviously this approximate pivot should produce a folding
ratio which has intuitively the same properties as the theoretical
one φ(X ). To circumvent the existence problem we rather use the
following function:

v
(2)
X : R

d → R

s 7→ Var
(
∥X − s∥2

)
.

If we find the s which minimizes v(2)X , we are likely to have a good
candidate to minimize vX . Moreover, the properties of v(2)X are
richer than the properties of vX .
Lemma 3.1. For all s ∈ Rd we have:

v
(2)
X (s) = 4 sT Σs − 2 sT Cov

(
∥X ∥2,X

)
+ Var

(
∥X ∥2

)
.

Lemma 3.1 tells us that v(2)X is a quadratic form of Rd . Thus, thanks
to the properties of the covariance matrix Σ, v(2)X is strictly convex
and then it has a unique minimum, noted s∗2 . Theorem 3.1 gives its
analytical expression.

Theorem 3.1. The function v(2)X has a unique minimum s∗2 given by:

s∗2 =
1
2
Σ−1 Cov

(
X , ∥X ∥2

)
. (2)

In particular, if X is a real random variable (dimension 1) then

s∗2 = E[X ] +
1
2
M3(X )

M2(X )
. (3)

With the previous result, we have always a pivot allowing to
compute an approximate of the folding ratio

φ̃(X ) =
Var ∥X − s∗2 ∥
E

(
∥X − E[X ]∥2

) . (4)

The previous expression leads to a straightforward algorithm
to compute φ̃(X ) (algorithm 1). For simplicity reason, we will use
“folding ratio” in the next paragraphs to express its approximate
version.

Algorithm 1 Batch computation of φ̃(X )
Input: X
Output: φ̃(X )
D ← E

[
∥X − E[X ]∥2

]
▷ or D ← Tr(Σ)

s∗2 ←
1
2
Σ−1 × Cov

(
X , ∥X ∥2

)
return Var ∥X − s∗2 ∥/D

We give some details about complexity. Let us consider a dataset
of n observations in Rd . The covariance matrix Σ needs O(n · d2)
operations and additional O(d3) operations are required for its
inversion. Computing the norm of the observations and the co-
variance Cov

(
X , ∥X ∥2

)
costs O(n · d) operations. Finally, anoter

O(d2) operations are required for s∗2 and O(n · d) for the variance
Var ∥X −s∗2 ∥. In a nutshell, the complexity of the batch computation
is linear for the number of observation n : O

(
d3 + n · d2︸      ︷︷      ︸

s∗2

+ n · d︸︷︷︸
Var ∥X−s∗2 ∥

)
3.3 Unidimensional case study
In this paragraph, we treat the unidimensional case with some com-
mon distributions. We show that the approximate folding ratio φ̃(X )
is relevant to rank the distributions according to their “unimodal
character”.

The expression of s∗2 is very convenient and allows us to cal-
culate analytically its value (and also φ̃(X )) for some well-known
distributions. We have summarized some of these results in table 1.

Distribution of X s∗2 φ̃(X )

Exponential E(λ)
2
λ

1 − 4e−2 − 4e−4 ≃ 0.385

Normal N(µ , σ 2) µ 1 −
2
π
≃ 0.363

Uniform U[a, b]
a + b
2

1
4

Table 1: Analytical approximate folding ratio for some
common unimodal distributions

The results above show two things: first we can notice that the
folding ratios do not depend on the distribution parameters. This
property is very interesting because it characterizes a whole distri-
bution class through a single value. Second, if we merely compare
the values, the distributions seem to be well-ranked according to
their “unimodal character”. Obviously, we concede this is not a
well-defined notion (more a visual aspect) but we can sketch what
we mean: a distribution is more unimodal when the relative density
at its mode is higher.

Table 1 presents only unimodal distributions. Actually, analytical
expressions for more complex distributions are more difficult to
get. However, we may present a bimodal example: let δ ≥ 0 and
Xδ ∼

1
2N(0, 1) +

1
2N(δ , 1). It means that Xδ follows a bimodal

normal distribution with a gap of δ between the two modes. In this
4



case, the value of s∗2 is merely δ/2 but the folding ratio is given by:

φ̃(Xδ ) = 1 −
1

δ2 + 4

(
δ erf

(
δ

2
√
2

)
+
2
√
2
√
π
e−

δ 2
8

)2
≃
δ ≥4

1

1 +
(
δ
2

)2
where “erf” is the classical error function. The figure 5a represents
the function δ 7→ φ̃(Xδ ). We can notice that this function decreases
when the gap between the modes δ increases. It naturally means
that the folding step is more efficient when the modes are far (the
initial variance is higher but the folding step cuts it down).

0 5 10 15
δ

0.0

0.2

0.4

ϕ̃
(X

δ
)

3.04

(a) Folding ratio
according to the gap

−5 0 5
0.0

0.1

0.2

3.04

(b) Distribution of Xδ
when δ = 3.04

Figure 5: Analysis of a bimodal normal distribution

We add the value of the uniform distribution to the figure (dotted
line) and we highlight the gap making this Gaussian mixture “less
unimodal” than the uniform density. The transition point corre-
sponds to δ = 3.04, and the figure 5b presents the shape of the
density for this gap. At this moment, we can observe that the dis-
tribution starts to become bimodal. It can be retorted because the
density looks clearly bimodal however let us imagine we have only
a sample of this distribution: there is a good chance the histogram
will not be as accurate and the distribution will be considered as
unimodal.

In this short study, we have shown that the approximate folding
ratio is a relevant statistics to evaluate the “unimodality character”.
Furthermore, the uniform distribution seems to be the right refer-
ence to make a decision. In the next part, we will use this analysis
to build our unimodality test.

3.4 The folding test of unimodality
In the previous parts, we have developed the approximate folding
ratio: a relevant statistics to rank the distributions according to their
unimodality character. Henceforth, we want to make a decision:
is the distribution of X unimodal or not? To answer, we need to
compare the folding ratio φ̃(X ) to a reference.

As claimed by Hartigan’s work [13] and also observed in the
paragraph above, the uniform distribution is likely to be this refer-
ence. Indeed, if we consider a sample of size n (from the uniform
distribution), we need a larger n to assess its unimodality. More
formally, Hartigan and Hartigan have shown that the dip statistics
of the uniform distribution is asymptotically larger than other dis-
tributions ones, meaning that an empirical sample drawn from the
uniform distribution need more observations to be considered as
unimodal (worst case of unimodality).

In our work, we generalize this approach for all dimensions
d ∈ N∗. We consider the uniform distribution within the d−ball as

the limit case of unimodality. We do not need to precise the radius
of this d−ball because the folding ratio does not depend on it (see
proposition 3.1).
Proposition 3.1. Let R > 0 and Bd (R) =

{
x ∈ Rd

�� ∥x ∥ ≤ R
}
the

d−dimensional ball of radius R. The approximate folding ratio of the
uniform random vectorUd ∼ U (Bd (R)) is:

φ̃d = φ̃(Ud ) =
1

(d + 1)2
.

The power of our method relies on its independence to distribu-
tion parameters, allowing to catch whole classes through a single
value. As of now, we are able to build an unimodality test based on
the comparison of folding ratios.
Definition 3.1 (Folding test of unimodality). Let X be a 3-
integrable random vector of Rd . We define the folding statistics
Φ(X ) by

Φ(X ) =
φ̃(X )

φ̃d
= (1 + d)2 φ̃(X ), (5)

leading to the folding test of unimodality: If Φ(X ) ≥ 1, the distribution
of X is unimodal, if Φ(X ) < 1 it is multimodal.

3.5 Statistical significance
Theory. Obviously, we do not have the same level of confidence

in the test whether we have 100 or 1 billion observations. Here we
precise the decision bounds when the sample size is n.

Let us take a sample X1 . . . ,Xn ∈ Rd . We have seen how we
can compute Φ(X1 . . . ,Xn ). According to this value we can decide
whether the distribution is unimodal or multimodal. Now, let us
imagine that the sampleU1 . . . ,Un is drawn from the uniform dis-
tribution: the test becomes very uncertain because the computed
folding statistics would be close to 1. So we may understand that
the test is more significant if we are far from the uniform case.

This classical statistical hypothesis testing problem leads us to
provide p−values. For instance, let q > 0 and let us assume we
have computed Φ(X1 . . . ,Xn ) = 1 − q < 0, so the distribution
is considered as multimodal. The probability to have a uniform
exampleU1 . . . ,Un with a lower folding statistics is given by:

P (Φ(U1 . . . ,Un ) < 1 − q) = P (1 − Φ(U1 . . . ,Un ) > q) .

Conversely, we can imagine thatwe have computedΦ(X1 . . . ,Xn ) =
1+q. In this case, we can estimate the probability to have a uniform
sample with a higher folding statistics:

P (Φ(U1 . . . ,Un ) > 1 + q) = P (Φ(U1 . . . ,Un ) − 1 > q) .

Obviously we want these two probabilities to be low. It means
that the p−value p = P (|Φ(U1 . . . ,Un ) − 1| > q) must be as low as
possible. In a nutshell, if wewant a significant test (usuallyp ≤ 0.05),
it implies to choose q high enough, making the uncertainty area
1 ± q wider. Conversely, if the test outputs a value Φ(X1 . . . ,Xn ), it
leads to a decision whose significance can be estimated by p (the
lower it is, the more significant it will be).

Numerical quantiles. The ideal would be to know the distribu-
tion of Yd ,n = |Φ(U1 . . . ,Un ) − 1|. However Yd ,n does not follow a
common distribution, leading us to compute some quantiles with
Monte-Carlo simulations. Table 2 presents the quantilesq according
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to d and n at a significance level p = 0.05 (10000 simulations for
each tuple with Marsaglia’s sampling method [16]).

n/d 1 2 3 4 5
100 0.22 0.28 0.33 0.35 0.38
200 0.15 0.2 0.23 0.25 0.27
500 0.1 0.13 0.15 0.16 0.17
1000 0.07 0.09 0.1 0.11 0.12
2000 0.05 0.06 0.07 0.08 0.09
5000 0.03 0.04 0.05 0.05 0.05
10000 0.02 0.03 0.03 0.04 0.04
20000 0.02 0.02 0.02 0.03 0.03

Table 2: Quantiles q according to d and n at significance
level p = 0.05

For example, let us take a dataset of 1000 observations in 2 dimen-
sions X1 . . . ,Xn (n = 1000,d = 2). The distribution is considered
significantly unimodal (at level p = 0.05) if Φ(X1 . . . ,Xn ) ≥ 1.09
(and significantly multimodal if it is lower than 0.91). Given a set of
similar tables for different values of p, we can infer the significance
of any test output Φ.

Obviously we notice that the higher is n, the tighter are the
bounds but the dimension increases the uncertainty. Unfortunately,
we cannot provide reliable quantiles for higher dimensions with
these low numbers of points because of the curse of dimensionality
in the sampling. They can easily be computed in specific cases but
the number of simulations must be high enough.

3.6 Incremental computation
In the paragraph 3.2 we proposed a batch (or offline) version for the
computation of φ̃(X1 . . . ,Xn ). However, in the streaming context,
we can accelerate it with an incremental computation of s∗2 .

As seen in the Section 3.2, we have an analytical expression for
the pivot: s∗2 =

1
2Σ
−1 Cov(X , ∥X ∥2). Furthermore this expression

can easily be computed incrementally or even updated over a sliding
window. This is a very important property if we work on streaming
data. The algorithm 2 details how to perform an update.

As an input we have a new incoming observation Xnew and the
square of its norm Rnew. The idea is to compute their respective
basic moments (cumulative sums SX and SR ) and their co-moment
(line 4) to finally compute an estimate of Cov(X , ∥X ∥2) (line 7).
About the inverse of the covariance matrix, we use the Sherman-
Morrison formula [21] to compute the inverse of the co-moment of
X (line 5) and then Σ−1 (line 6). We recall:

SM(A−1,u,v) =
(
A + u ×vT

)−1
= A−1 −

A−1 × u ×vT ×A−1

1 +vT ×A−1 × u
.

Here we present an update, so we have to deal with the initial-
ization. Basically, the variables n, SX , SR ,VX ,R and C are set to 0.
Unfortunately, the initialization of V inv

X and Σinv is not as simple
because it requires several observations Xi (at the beginning V inv

X
and Σinv are singular matrices). In practice, we start from a small
batch of data Xinit. Therefore, we can compute VX ← XT

init × Xinit
and then V inv

X ← V −1X (so Σinv). Finally, this update can easily be
extended to sliding window requiring to store the quantitiesXi and

Algorithm 2 Incremental computation of s∗2
Input: Xnew,Rnew = ∥Xnew∥2

Output: s∗2
1: n ← n + 1
2: SX ← SX + Xnew
3: SR ← SR + Rnew
4: VX ,R ← VX ,R + Xnew × Rnew
5: V inv

X ← SM(V inv
X ,Xnew,Xnew)

6: Σinv ← n × SM(V inv
X ,−SX ,

1
n SX ) ▷ Σ−1

7: C ← 1
nVX ,R −

1
n SX ×

1
n SR ▷ Cov(X , ∥X ∥2)

8: s∗2 ←
1
2 × Σ

inv ×C

Ri , but here, we prefer not to overload the reader with additional
formulas.

Is it possible to go further by computing φ̃(X ) incrementally too?
Unfortunately, this is not as straightforward. There is no problem
for the denominator E

[
∥X − E[X ]∥2

]
because this is the trace of Σ.

The main issue comes from Var ∥X − s∗2 ∥: a variance can easily be
computed incrementally (like in the algorithm 2) but s∗2 changes at
each iteration, so an update of all the distances ∥Xi − s∗2 ∥ is needed.

In the paragraph 3.2, we discussed about the complexity of the
batch computation. In table 3, we compare its complexity with the
incremental computation in 3 cases:
• single computation: only φ̃(X1, . . .Xn )
• cumulative: φ̃(X1), φ̃(X1,X2) . . . φ̃(X1, . . .Xn )
• sliding window: φ̃(X1, . . .X1+w ), . . . φ̃(Xn, . . .Xn+w )

Computation(s) Batch Incremental

Single d3 + n · d2 (+ n · d)

Cumulative n · d3 + n2 · d2 d3 + n · d2 + n2 · d

Sliding window n · d3 + n ·w · d2 d3 + n · d2 + n ·w · d

Table 3: Complexity of each method (in big O notation)

Without delving into the details, we may notice two phenomenons.
First, the incremental computation of s∗2 decreases the dependency
on the dimension d (actually the update of the matrix costs O(d2)
instead of O(d3) in the batch version). Second, as the computation
of Var ∥X − s∗2 ∥ cannot be done efficiently, the computation of the
folding statistics cannot be cut down any more.

4 EXPERIMENTS
In this section, we highlight the relevance of the folding test of
unimodality. We experiment it on real world multidimensional data
to emphasize its correctness and its practical uses. Particularly, we
show that it provides a paramount statistical description neces-
sary for data analysis. We make our python3 code available for
reviewers1.

4.1 Should I try to cluster Pokémon?
In this section, we will show that our test is able to avoid a use-
less clustering step. Particularly, we analyze the Pokemon Stats
1git clone https://scm.gforge.inria.fr/anonscm/git/sharedcode/sharedcode.git
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Dataset from kaggle2. This dataset gathers statistics of the Poké-
mon until the 6th generation: it includes 21 variables per each of
the 721 Pokémons. In this short experiment, we keep only the 6
basic fight statistics: Attack, Defense, HealthPoints, SpecialAttack,
SpecialDefense and Speed.

A priori, in such a 6-dimensional space, this is not easy to claim
whether some clusters arise. Either all the features pairs could be
plotted, or a clustering algorithm could be run. Through the first
method (figure 6), the distributions of the features and their pairs
lead us to think that the whole distribution is rather unimodal.

When we compute the folding statistics to this dataset, we get
Φ(X ) = 5.04. As guessed above, this result claims that the distribu-
tion is unimodal.
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Figure 6: Pairs-plot of the Pokémon six fight characteristics

To show that our approach is relevant, we compare the result of
our test with the output of some well-known clustering algorithms.
Unfortunately, most of them needs to set precisely the number of
clusters, so we only test the approaches having some procedures to
find it.

First we try to model the data with gaussian mixtures. The num-
ber of clusters is found by minimizing either the Akaike’s or the
Bayesian Information Criterion (AIC, BIC). Then we use the gap
statistics [24] of Tibshirani et al., which is a common statistics to
estimate the number of clusters. We test also the Mean Shift al-
gorithm [2] with different quantiles q ∈ [0.3, 0.8]. This parameter
tunes the “similarity” of the points (it sets the bandwidth of the un-
derlying gaussian kernel). Finally, we run the Affinity Propagation
algorithm [8] with the euclidean distance as similarity. For these
two last approaches, we show only “stable” results, so we do not
present neither absurd parameter choices (the mean shift algorithm
2https://www.kaggle.com/alopez247/pokemon

Method Nb of clusters Avg. silhouette
GMM (with AIC) ≥ 5 -0.0045
GMM (with BIC) 4 0.026
Gap statistic 2 0.287
Mean shift 3 0.55

Affinity propagation 2 0.181
Table 4: Number of clusters and average silhouette score

according to the clustering method

with q → 1 would make all the points similar) nor absurd outputs
of some algorithms (the affinity propagation algorithm with the
gaussian similarity did not output less than 49 clusters). Finally we
compute the average silhouette score [19] to estimate the clustering
quality (the closer to 1, the better).

The results are given in the table 4. We can notice that there
is no consensus among the different methods: they do not output
the same number of clusters. At the very least, this indicates that
the dataset does not contain obvious clusters. Now regarding the
returned clusters, the average silhouette scores are mostly low, even
close to zero, meaning that these clusters are not well separated.
The highest silhouette score is reached by Mean Shift, however the
algorithm returned 3 clusters of size 717-3-1, so in practice it found
only one cluster. These results are in favor of the unimodality of
the data, agreeing with the result of our folding test of unimodality.

Before running clustering algorithms, our simple test can thus
be a crucial step to decide whether clustering is relevant or not.

4.2 Stock market behaviors
The aim of this section is twofold. Firstly, we analyze the behav-
ior of the folding statistics over a sliding window. Secondly, we
show how the folding test of unimodality can help the clustering
parametrization step.

Catching the behavior jumps. In this experiment we analyze a
part of the DJIA 30 Stock Time Series dataset hosted on kaggle3. In
particular we study the historical stock data from NYSE (between
2006-01-03 to 2017-29-12) of four major companies: Cisco (CSCO),
Intel (INTC), IBM and Microsoft (MSFT). We consider the highest
price daily reached, so we get a dataset with n = 3018 observations
in dimension 4 (number of companies).

The figure 7 shows the evolution of the stock prices for these
four companies. We may notice two different behaviors: IBM stocks
vary more than Cisco, Intel and Microsoft ones.

Now, we compute the folding statistics Φ over a sliding window
of size 650 (about two years and half, because there is no data on
Saturday and Sunday). It means that at every iteration, we take a
snapshot of 650 observations in dimension 4, and we compute Φ
on it. The results are presented in the figure 8. We add significance
bounds at level 0.05 (q ≃ 0.15). One can roughly see three “moments
of unimodality” (around iterations 500, 1500 and 1800).

What does it mean? If the distribution at these moments is uni-
modal, it means that the companies stocks are individually quite
the same: their behavior is stationary within the window. At the
3https://www.kaggle.com/szrlee/stock-time-series-20050101-to-20171231
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Figure 7: Stock evolution of the four companies
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Figure 8: Folding statistics within 650 days time windows

moments when the distribution is multimodal, some stock prices
are jumping.
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Figure 9: Extreme time windows

To highlight this phenomenon, we show two windows on the
time series (figure 9). One corresponding to the minimum of Φ
(maximum of multimodality) and the other one corresponding to
its maximum (maximum of unimodality). Indeed, we may notice
that the most multimodal window is when the IBM stocks jump a
lot unlike the others although the most unimodal window occurs
when the four stocks are the most stationary.

If we look deeper at the scatter plots within these two windows
(figure 10), we can confirm these behaviors (to ease the plot we

have overlaid the scatter-plots IBM vs MSFT, IBM vs CSCO and
IBM vs INTC). On figure 10a, we can observe about three clusters
whereas no clusters really arises on the figure 10b. However we
clearly see three little groups of data on this latter figure. In fact,
they are not statistically substantial (not real modes).
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Figure 10: Scatter-plots IBM vs Others

Running time. We compare the running time of two methods:
computing the statistics on the complete window each time (batch
computation), or using the incremental approach presented in sec-
tion 3.6. The complete computation (2400 iterations) took 5.5 sec-
onds with batch computation, and 4.5 seconds with the incremental
algorithm (around 18% acceleration). Note that the variance com-
putation part is identical in both methods: if we only compare the
computation of s∗2 , the times are 3.4 and 0.9 seconds, giving a 73%
decrease on running time. We can conclude that even on this rela-
tively simple data (low dimension, few iterations), the incremental
computations has a significant impact on running time.

Helping clustering algorithms. We have mentioned in the Poké-
mon experiment (section 4.1) that unimodality testing provides a
different piece of information from clustering. In that case, it was
relevant to avoid over-clustering. Here, we use it as a parametriza-
tion support for clustering.

Let us consider the DBSCAN algorithm [6]. It requires two pa-
rameters: the neighborhood radius r and the minimum requested
numbers of neighbors to be considered as a core pointms . Our idea
is to tune the radius parameter so as to make DBSCAN output “1
cluster” only when Φ > 1. Obviously, we cannot ensure the quality
of the clustering in the other regions however with this criterion
we can narrow down the parameter research domain.

An example with ms = 80 (12.5% of the observations in the
window) is presented on the figure 11. We plot the folding statistics
(top) and the number of clusters output by DBSCAN with different
neighborhood radius (r = 6, 7, 8, 9 and 10). Moreover we add all the
unimodal areas (where Φ > 1 + q) and the first multimodal area
(where Φ < 1 − q).

Let us analyze the unimodal area around iteration 1500. All the
instances of DBSCAN output nearly a single cluster. But around
it. 1800 (unimodal area too), they all return 2 clusters. In the first
unimodal zone (around it. 500) DBSCAN(r = 7) is the only one
not returning one cluster. Eventually, if we look at the first mul-
timodal area (before it. 330), only the instances DBSCAN(r = 7)
and DBSCAN(r = 8) output several clusters. We may extend the
analysis to all the regions, making the instance DBSCAN(r = 8) the
more faithful to the folding test of unimodality.
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Figure 11: Number of clusters output by DBSCAN
according to the radius parameter r

We insist on the non-completeness of our test. We cannot claim
that DBSCAN gives the correct clusters in the multimodal regions.
Moreover, we know that other phenomenons should be taken into
account for clustering like the influence of the second parameter
and/or data normalization. We merely show that our lightweight
test is able to provide some paramount information about data. The
latter may be useful for a potential clustering stage.

5 CONCLUSION
This paper introduces the folding test of unimodality. To the best
of our knowledge, this is the first time a multivariate and purely
statistical unimodality test has been proposed. The test is based on
a new folding statistics, which provides a score related to the “level
of unimodality” of a distribution. This statistics does not depend on
the parameters of the input distribution. The only parameter of the
unimodality test is a natural p−value giving the desired significance
level of the result.

Among the perspectives opened by this work, we envision to
exploit our folding statistics to discover k values for the k−means
algorithm. This was explored before in the dip-means approach, by
using unidimensional unimodality tests on all pairwise distances.
Using our folding unimodality test allows to immediately validate
each cluster of k−means in its multi-dimensional space (unimodal-
ity assumption). This significantly reduces the complexity com-
pared to dip-means.
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