
Automated Identification of Cryptographic Primitives in
Binary Code with Data Flow Graph Isomorphism

Pierre Lestringant* Frédéric Guihéry* Pierre-Alain Fouque†
*AMOSSYS †Université de Rennes 1 and

R&D Security Lab Institut Universitaire de France
Rennes, France Rennes, France

first.last@amossys.fr first.last@univ-rennes1.fr

ABSTRACT
Softwares use cryptographic algorithms to secure their com-
munications and to protect their internal data. However the
algorithm choice, its implementation design and the gener-
ation methods of its input parameters may have dramatic
consequences on the security of the data it was initially sup-
posed to protect. Therefore to assess the security of a binary
program involving cryptography, analysts need to check that
none of these points will cause a system vulnerability. It im-
plies, as a first step, to precisely identify and locate the cryp-
tographic code in the binary program. Since binary analysis
is a difficult and cumbersome task, it is interesting to devise
a method to automatically retrieve cryptographic primitives
and their parameters.

In this paper, we present a novel approach to automati-
cally identify symmetric cryptographic algorithms and their
parameters inside binary code. Our approach is static and
based on Data Flow Graph (DFG) isomorphism. To cope
with binary codes produced from different source codes and
by different compilers and options, the DFGs is normalized
using code rewrite mechanisms. Our approach differs from
previous works, that either use statistical criteria leading to
imprecise results, or rely on heavy dynamic instrumentation.
To validate our approach, we present experimental results on
a set of synthetic samples including several cryptographic al-
gorithms, binary code of well-known cryptographic libraries
and reference source implementation compiled using differ-
ent compilers and options.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring—reverse engineering, and reengineering ; D.4.6
[Information Systems Applications]: Cryptographic con-
trols; I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and tree search strategies

Keywords
Static Binary Analysis, Reverse Engineering, Cryptography

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714639.

1. INTRODUCTION
When assessing software security, analysts pay special at-

tention to cryptographic algorithms for several reasons. First
the algorithm choice may be problematic. Algorithms that
have not been thoroughly analyzed or for which practical
attacks have been published are insecure and should not be
used. For instance, practical collision can be found for the
MD5 hash function [33], however it is still not uncommon
to find it in applications. Second, the algorithm’s imple-
mentation may not be compliant with the specifications. It
was the case for GnuPG that used a faster implementation
of the signature scheme DSA by relying on smaller nonces
[23]. This was instrumental in an attack that enabled to re-
cover the signer’s private key in less than a second. Because
such liberties taken from the specifications may reduce the
algorithm security, they should be detected so that they can
be carefully analyzed. Third, the algorithm’s implementa-
tion may leak information about secret data. Today, it is
well-known that the most efficient attacks use side-channel
information. Thus it is essential to check if these attacks ex-
ist on the implementation being evaluated. The cache tim-
ing attack against the table implementation of AES [26] and
the recent attack based on acoustic leakage against RSA [12]
are good examples of practical side-channel attacks. Finally,
despite a secure implementation, poorly generated input pa-
rameters can still affect the system security. Therefore the
analyst will be particularly interested in how the key, the IV
or the padding are generated. For instance, attacks known
as padding oracle [21, 28] target insecure padding scheme.

The ability to conduct these analyses at the binary level
is important because source code is not always available.
And even when it is, the compiler may introduce security
breaches [5, 30] that can only be revealed by looking at the
binary code. It is clear that a first prerequisite will be to find
and identify cryptographic primitives in binary code. There-
fore, designing automated mechanisms to address this spe-
cific problem should be highly profitable for security experts
who have a limited amount of time to assess the security of
software.

The solution we proposed, based on static analysis and
more particularly on data flow graph isomorphism is able to
identify and accurately locate cryptographic algorithms and
their parameters inside binary executables. Our solution
targets symmetric cryptographic algorithms. We choose not
to address the problem of code obfuscation because the ob-
jective of our method is to deal with the kind of general soft-
ware that is typically reviewed during product certification

and not to specifically target applications such as malwares
that would have involved heavy obfuscation. In summary,
this paper makes the following contributions:

• We present a sound and efficient approach to auto-
matically identify and locate symmetric cryptographic
algorithms and their parameters in binary code.

• We propose a normalization process and a signature
matching scheme that is resistant against compiler op-
timizations and source code variations.

• We present the results of an experimental study that
demonstrates the efficiency of our approach on well-
known cryptographic libraries.

The remainder of the paper is structured as follows. In
Section 2 we present more formally the previous works on
the field of cryptographic identification. Then, we present at
a high-level our solution in Section 3: the DFG is described
in Section 4, the normalization process in Section 5, the
signature design in Section 6 and the subgraph isomorphism
algorithm due to Ullman is recalled in Section 7. Finally, in
Section 8 we give experimental results.

2. RELATED WORK
The topic of cryptographic primitives identification in bi-

nary programs has been previously addressed. In this Sec-
tion we will first present and discuss the limitations of two
characteristics used to identify cryptographic code: data
constant and input/output relationship. Finally we will
briefly list other lines of work that are closely related.

2.1 Data Constant
Symmetric cryptographic algorithms often contain specific

constants. These constants range from a single value of a
few bits to large lookup tables of several kilobytes. Because
it is unlikely to find them in different algorithms, they can
be used to identify cryptographic code. This is a widely
used technique and it has been implemented in several pub-
licly available tools, such as Findcrypt2 (IDA plugin) [14],
KANAL (PEiD plugin), or H&C Detector, to name but a
few. As far as we know all tools based on constant iden-
tification solely rely on static analysis. However we should
bear in mind that constant identification can also be per-
formed using dynamic analysis. This is particularly useful
in the case of packed programs, or for constants that are
dynamically computed.

Despite its simplicity and its efficiency the constant identi-
fication technique does not meet our precision and reliability
requirements. We exhibit some of the limitations of con-
stant identification with the following example, that uses an
AES table implementation as a target. A reminder on pos-
sible AES implementations is given in Appendix A. Given
a binary program, let us assume the AES S-Box has been
detected by one of the previously listed tools. The precise lo-
cation of the AES encryption/decryption routines still needs
to be investigated. In fact multiple parts of the program
can access the S-Box, such as: the AES key schedule (either
for encryption or decryption) or a 4 kilobytes lookup tables
generation routine. Moreover the parameters (including the
key size) have not been identified. Finally, the detected al-
gorithm could be another cryptographic primitive that uses

the AES S-Box, such as the Fugue hash function [15] or the
LEX stream cipher [6].

To conclude, constant identification may be a very effec-
tive first step, but it should not be used as a standalone
technique to precisely and completely uncover cryptographic
primitives.

2.2 Input/Output Relationship
The I/O relationship identification technique relies on the

following hypothesis: given a cryptographic primitive f :
I → O, the relationship between an input value and the
corresponding output value identifies f with an overwhelm-
ing probability. In other words, if during an execution a
program fragment reads a value i ∈ I and writes a value
o ∈ O such that f(i) = o, we can conclude that this frag-
ment implements the primitive f .

From a practical perspective, the targeted program is first
executed in a Dynamic Binary Instrumentation (DBI) envi-
ronment. The exact values manipulated by the program
are recorded in an execution trace. The execution trace is
then split into fragments using the loop abstraction accord-
ing to the hypothesis that cryptographic code manipulates
their arguments within loops. This observation is used to
narrow the search space by only considering what happens
inside loops’ body. For each fragment F a set of input and
output arguments (called respectively IF and OF) are re-
constructed from its instructions’ operands. Finally, given a
database of cryptographic reference implementations P , we
search f ∈ P such that: i ∈ IF and f(i) ∈ OF .

Gröbert et al. [13] were the first to use the I/O rela-
tionship to recognize cryptographic primitives. Zhao et al.
[34] also used the I/O relationship, but instead of using the
loop abstraction to extract candidates, they split the trace
in terms of functions. More recently, Calvet et al. [7] pro-
posed a complete and detailed tool named Aligot based on
the I/O relationship. Aligot includes a new loop definition
and the analysis of the data flow between loops to produce
the best candidate for I/O testing.

However in our opinion two problems remain unaddressed
by this approach. The first problem is fragment extraction
in the case of unrolled loops. Loop unrolling is a common
technique used by software engineers or compilers to reduce
branch penalties and increase instruction level parallelism.
It is not uncommon to encounter unrolled loops in crypto-
graphic code as performance is a major concern. However
according to our observations even Calvet loop’s definition
is unable to cope with unrolled loop: since loop unrolling is
not the ultimate step of an optimization process, unrolled
loops are not the exact repetition of a sequence of dynamic
instructions.

The second problem concerns the parameters reconstruc-
tion. Instruction’s operands have to be aggregated to form
input and output parameters for reference implementations.
Previous works [13, 34, 7] have provided rules to concate-
nate memory operands (based on spatial proximity either in
code or in memory). However nothing has been proposed
to concatenate register operands. Without external infor-
mation, we must resort to a brute force approach. Given
n operands, the number of parameters resulting from ev-
ery combination and permutation of k operands, is: n!

(n−k)!
.

This is not tractable in practice if we consider that the same
parameter may be distributed in the memory and in regis-
ters, as it is for instance often the case for the states of the

AES or MD5. In that case n is the sum of the number of
registers operands an the number of memory operands.

To conclude, the I/O relationship identification method
has several qualities: parameters identification, no false pos-
itive and resilient against implementation variations. How-
ever we have identified two blind spots: unrolled loops and
parameters reconstruction.

2.3 Miscellaneous
In this section we list works that do not directly address

the problem of cryptographic identification, but are closely
related. A first line of work is automatic decryption of
encrypted communication received by a binary executable.
Given a known or an unknown decryption algorithm, the ob-
jective is to automatically retrieve decrypted data from the
process memory. This problem deserves to be mentioned
here, since it requires to detect where and when the crypto-
graphic code is and implies at least to identify the output pa-
rameter (or conversely the input parameter for encryption).
Lutz [20] was the first to address this problem in the context
of malware analysis. He devised a dynamic technique based
on data tainting and several heuristics including loops, inte-
ger arithmetic operations and entropy (an entropy drop may
indicate a decryption). ReFormat [31] is a tool designed to
automate the protocol reverse engineering of encrypted mes-
sages. It also uses data tainting to track the encrypted data
in memory, but solely relies on arithmetic and bitwise in-
structions to discern the decryption phase. Finally Wang
et al. [29] proposed a novel approach for automated Digital
Rights Management (DRM) removal from streaming media.
Their approach is driven by real-time constraints. The de-
cryption algorithm is revealed by a randomness decrease in
memory buffers manipulated by loops. According to this
study randomness should be preferred over entropy to dis-
sociate encrypted data from compressed data.

A second closely related area is binary clone detection. It
is a more general problem but some of the techniques used
might be of some interest for cryptographic primitive iden-
tification. Sæbjørnsen et al. [25] based their binary clone
detection on the comparison of features vectors, which char-
acterize a code fragment in terms of instruction mnemon-
ics and operands. Finally, Rendezvous [19] identifies binary
code fragment using statistical model relying on instruction
mnemonics, Control Flow Graph (CFG) subgraph and data
constants. Experiments carried out by the authors show
resilience to the use of different compilers and compiler’s
options.

3. SOLUTION OVERVIEW
DFGs are a natural way to represent the dependencies

between operations. They are also convenient to rewrite
program code, i.e. to modify the code without breaking its
semantics, as illustrated by their many uses in the compiler
field for code optimizations [4]. For those two reasons the
DFG representation appears well suited to address the prob-
lem of cryptographic algorithm identification. First it will
be easy to extract specific subsets of related operations to
form accurate signatures. Second, it will be possible to re-
move some of the variations that exist between different in-
stances of the same algorithm, by rewriting the DFG. These
variations have either been introduced in the source code or
during the compilation. Ideally there should be a unique sig-
nature that matches every instance. Thus these variations

should be removed leading to a canonical form that contains
the signature.

In a nutshell, our identification method is a three-step pro-
cess. First given as input a piece of assembly code we build
the corresponding DFG. Second we normalize this DFG us-
ing rewrite rules. Third we search for subgraphs in the DFG
that are isomorphic to the graph signature of a given crypto-
graphic algorithm. If such a subgraph is found, we conclude
that the assembly code implements the corresponding algo-
rithm. Figure 1 shows the flowchart of our identification
method.

Figure 1: Simple flowchart of the DFG signature
based identification technique

It is natural to wonder if CFGs could be used in a similar
process. However, due to performance and security consid-
erations (typically to resist timing attacks), the implemen-
tation of symmetric cryptographic algorithms tends to avoid
conditional instructions. For example there is no conditional
instruction in a standard MD5 implementation (Appendix
B). Furthermore CFG may vary from one algorithm in-
stance to another due to loop unrolling. For those reasons,
control flow information does not seem relevant for symmet-
ric cryptographic identification and we choose to solely rely
on the DFG. To take full advantage of this simplification,
we make the assumption of straight-line programs where ev-
ery loop has been unrolled and every function call has been
inlined.

To achieve acceptable performances, our method should
not be applied directly to the code of a whole program. In
fact the second and third steps are computationally intensive
and the smaller the DFG is, the faster they will be executed.
Therefore, only preselected program fragments should be
submitted to the identification process. However unlike the
I/O identification method (described in Section 2.2), there
is no hard constraint on the fragment extraction mechanism
in our case. Obviously the cryptographic code should be in-
cluded in one fragment, but using large fragments does not
affect the method reliability. In fact, the subgraph isomor-
phism algorithm is able to detect signatures even though
they are surrounded by additional elements. Some of the
criteria that may be used to extract suitable code fragments
are discussed in Section 8.

4. DATA FLOW GRAPH CONSTRUCTION

4.1 Model of DFG
A DFG is a Directed Acyclic Graph (DAG) that represents

the data dependency between a set of operations. A vertex
represents either an arithmetic/logic operation or an input
variable. An edge from vertex v1 to vertex v2 means that
v1 (or the value produced by v1, if v1 is an operation) is an
input operand for operation v2. Each operation produces
one result and takes a non-empty unordered set of operands
as input. For non commutative operations, edges may be
tagged using special labels to clearly identify the role of each

operand. We also distinguish constant from non-constant
input variables. Constant variables have a fixed known value
derived from immediate operands of the x86 assembly code;
non-constant variables have an unknown value defined either
by a register or by a memory location. Memory accesses are
potentially considered as both input/output variables and
operations, and as such they are handled separately.

4.2 From Assembly to DFG
From the assembly code of a program fragment F , we

build the corresponding DFG: GF = (V,E) (V is a set
of vertices and E is a set of edges) by iterating over the
instructions of F . Each instruction i ∈ F is translated into
a set of operations Oi which can be empty (if i has no effect
on GF , for instance because it is a branch instruction) or
contain one to several vertices (multiple operations may be
required to reproduce the behavior of complex instructions).
Depending on the type of the instruction’s input operands,
we take the following actions:

Immediate. We add a constant input variable to GF . This
vertex holds the value of the immediate operand and
is linked by an edge to Oi.

Register. We add an edge between the last definition of
the register and Oi. In practice, we maintain an array
that associates each register with the vertex holding
the reference to its current value. This reference can
be null if the register has not yet been used in F (In
that case a new input vertex is added to the graph),
or it can point to either an input variable (the register
was read but not set in F) or an operation (the last to
have written in the register).

Memory. Memory operands are accessed through special
operations: load for memory read and store for mem-
ory write. These two operations take as input operand
an address which computation is explicitly transcribed
in GF . We also keep track of the order in which mem-
ory accesses are made in the program fragment.

4.3 Example
We illustrate our DFG model and the translation process

with an example. This example is based on a custom Even-
Mansour cipher [11] with a 32-bit substitution box as the
public permutation. If we note p the plaintext, k the key
and S the substitution box, the ciphertext is equal to the
following expression: S(p⊕ k)⊕ k. An x86 assembly imple-
mentation of this encryption algorithm is given in Figure 2
and the corresponding DFG is given in Figure 3. Input vari-
ables are represented inside rectangles and operations inside
circles. The relative order of memory accesses is specified
by an index. This example will be pursued through Section
5 and Section 6.

Figure 2: A possible x86 assembly code for the cus-
tom encryption algorithm. Given a plaintext p, an
encryption key k, the custom algorithm computes
S(p⊕ k)⊕ k where S is a substitution box.

esp8 4

load1

load2

sbox

load3

4

load4

2

+ +

xor

+

+

xor

shl

line 1

line 4

line 2

line 5

Figure 3: DFG derived from the assembly code of
the custom encryption algorithm given in Figure 2.
Input variables are represented inside rectangles and
operations inside circles.

5. NORMALIZATION
The goal of normalization is to modify the DFG without

breaking its semantics in order to maximize the chance of
finding an algorithm’s signatures. In other words we try
to remove the variations that may have been introduced by
either the developer, the optimizations of the compiler or
the translation into machine code.

Once the DFG of a code fragment has been constructed,
we normalize it using a set of rewrite rules. Since it is hard
to understand how a particular rule can affect the others, we
simply iterate the application of the rewrite rules until we
reach a fixed-point, which we consider to be the canonical
form of the DFG. We assume that the set of rewrite rules
does not contain conflicting rules that will cause an endless
loop. In practice the canonical form is reached in less than
ten iterations for most cases.

We use three types of rewrite rules: normalization rules,
memory simplification rules and general simplification rules.

5.1 Normalization Rules
Normalization rules are used when several instructions

can be used to perform the same operation. We arbitrar-
ily choose one as the normalized version and we create rules
to convert from the others. Examples of normalization rules
that we use, are given in the table below:

Original Normalized
a⊕ 0xff..f ∼ a

rol(a, cst1) ror(a, cst2) with cst2 = size(a)− cst1
a− cst1 a + cst2 with cst2 = −cst1
a⊕ a 0

a× 2n a << n

5.2 Memory Access Simplification Rules
During the generation of the DFG, every memory access

has been replaced by a load or a store operation. However,
many of them are caused by registers filling and spilling

and are irrelevant to the algorithm identification. Most of
all, it is necessary for normalized graphs to be independent
from where local variables are stored (either in registers or
memory). A consequence is that normalized graphs should
be free of any memory operation except for the ones cor-
responding to input or output variables. We devise three
rules to simplify memory accesses. For each memory ad-
dress, i.e. each vertex of the DFG that is used as an address
operand by at least one memory operation, we compute the
corresponding sequence of memory operations. Then, we
traverse the sequences and perform simplifications for the
following patterns:

• store after store: the first store has no effect, it can
be removed.

• load after store: the output of the load is equal to
the input of the store, the load can be removed.

• load after load: the two operations output the same
value, they can be merged.

However, the problem of aliasing is yet to be solved. Alias-
ing happens when two different vertices are equal to the same
address value. In such cases, the address sequence com-
puted for both vertices will be incomplete. As a first con-
sequence, we may miss additional simplification cases. This
is not a concern however, since we can assume that these
will eventually be dealt with by other simplification rules
(such as common subexpression elimination). The second
consequence is more problematic: simplifications performed
with incomplete sequences may break semantics of the code
irreversibly. This happens in the following cases:

• if an aliased load happens between two memory store.

• if an aliased store happens between a memory store

and a memory load.

• if an aliased store happens between two memory load.

To address this problem, we can use a may-alias analy-
sis. When a possible aliasing issue is detected we split the
sequences of memory operations. The result is a set of se-
quences that are free of any aliasing conflict and that can
be safely simplified. However, if the may-alias analysis is
too inclusive, several legitimate simplification cases will be
discarded. This is the main drawback of that method.

An example of memory access simplification is given in
the right hand side of Figure 4. Two load operations are
performed for the same address (esp + 8), there is no mem-
ory write in-between (that is to say no possible aliasing is-
sue), thus according to the simplification rules they can be
merged.

5.3 General Simplification Rules
We wish to achieve two goals with the general simplifica-

tions rules. The first goal is to find which memory accesses
are made at a same address in order to enable the mem-
ory simplifications described previously. The second goal is
to optimize the DFG of non optimized code. In fact com-
piler optimizations are not necessarily reversible. Hence if
we have to reach the same normalized representation from
two versions: one well optimized and the other not, the only
possibility left is to optimize code that is not well optimized.
For example let us assume the following sequence of instruc-
tions and its optimized counterpart:

b = a >> 16 e = a >> 14

c = b ∧ 0xff −→ d = e ∧ 0x3fc

d = c << 2

Let us assume that a certain compiler happens to perform
this optimization. It is obvious that it will be hard to be
undone: how do we guess there was a right shift operation
at the end of the sequence? Its normalized representation
should definitely be the optimized one. As a result, every
time the original sequence is encountered it will have to be
optimized.

At this point one might think that the amount of work re-
quired to match modern compilers data flow optimizations
is going to be tremendous. However due to the straight line
hypothesis we made, it is simpler than it might look. In fact
the program fragment F can be seen as a single basic block
with one entry point and one exit point. Thus the simplifi-
cation rules required to catch up with maximal optimization
levels only have to be applied locally to a single basic block.
These rules can be divided in two main mechanisms: com-
mon subexpression elimination and constant simplification.

Common Subexpression Elimination
Common subexpression elimination is a classical compiler
technique to remove redundant operations. If two operations
share the same set of input operands, then they obviously
produce the same output. Consequently one of them can
safely be removed from the graph.

Common subexpression elimination is especially impor-
tant for memory addresses. In fact in x86 code, the effective
address computation is generally performed every time a
memory access is made. As a consequence it is hard to de-
tect if two memory accesses are made at the same location,
since their address operand systematically belongs to differ-
ent vertices. Common subexpression elimination will merge
effective address computations resulting from the same set of
operands (base, index, scale and displacement). As a result
some memory accesses will explicitly share address vertex
in the graph and thence it will be possible to perform the
memory simplification rules described previously.

An example of subexpression elimination is given on the
center of Figure 4. Two additions take as input ESP and
8. One of them was removed, leaving the graph with two
memory load sharing the same address vertex.

Constant Simplification Rules
We can perform constant simplification in the following case:

1. If every input operands of an arithmetic/logic oper-
ation is a constant variable. The operation can be
replaced by the result.

2. If an arithmetic/logic operation has an operand which
is equal to either the identity element or the absorbing
element of that operation (if they exist).

However it is sometimes required to rearrange sequences
of associative operations to perform constant simplification.
This requirement is illustrated on the left hand side of Fig-
ure 4 where two consecutive additions involving constant
variables can be simplified if they are rearranged. Another
kind of rearranging strategy that enables further constant
simplification is distribution. It is especially important for
memory address simplification due to the scale parameter of
the x86 addressing mode.

esp8

load2

load1

sbox

load3

load4

2

4

4

8

+

xor

shl

+

xor

+

+

+

esp8

load2

load1

sbox

load3

load42

8

+

xor

shl

+

xor

+

esp 8

load2

load1

sbox

load3

load42

+

xor

shl

+

xor

Figure 4: During the normalization process three transformation rules can be applied to the DFG of Figure
3. For each, the initial state is recalled in dashed red and the result is given in dark green. From the left
to the right we successively perform: a constant simplification, a common subexpression elimination and a
memory simplification.

For that purpose we design two additional rewrite rules.
The first rule merges consecutive associative operations in-
volving constant variables. The second rule distributes dis-
tributive couple of operations involving constant variables.

6. SIGNATURE
A signature is a distinctive subgraph shared between the

normalized DFG of every instance of an algorithm. Signa-
tures should be as complete and precise as possible in order
to reduce the number of false positives and to reveal ev-
ery feature of the algorithm that we might be interested in.
Since our objective is to precisely locate the algorithm and
its parameters, the signatures must cover the full length of
the algorithm and must not be limited to some specific frag-
ments. But conversely, signatures should not be too restric-
tive so as to match the largest range of possible implemen-
tations. Ideally the normalization process should be able to
transform any instance of an algorithm into a unique repre-
sentation. However, the level of analysis and understanding
required is sometimes far beyond the reach of our rewrite
rules. When it happens, one may favor a more generic sig-
nature that leaves the part subject to variations unspecified
rather than to multiply the number of required signatures.

6.1 Signature Creation
We currently do not implement an automatic mechanism

to create new signatures, and they have to be generated
manually. Obviously, this requires some knowledge of the
assembly language and a good understanding of the algo-
rithm implementation. However, there is no prerequisite
regarding the normalization process in theory. In fact, to be
compliant with the rewrite rules, a signature can always be
normalized after its creation, like any other DFG.

6.2 Macro Signature
Despite the normalization step and careful signature de-

signs, multiple signatures are sometimes required to cover a

wide range of implementations. In such cases, to reduce their
number, we introduce macro signatures to model context-
free graph grammar. The key idea is to append to the
DFG a special vertex every time a signature is detected. It
makes possible to issue higher level queries through macro
signatures containing reference to signatures that have al-
ready been encountered. More formally a macro signature
is a graph containing usual DFG vertices (terminal symbols)
and also vertices representing other signatures (non termi-
nal symbols). We use a bottom-up parsing algorithm relying
on a subgraph isomorphism solver (discussed in Section 7).
Starting from the signatures containing only terminal sym-
bols, a special vertex is appended to the DFG every time an
instance of a signature is found. These vertices are labeled
according to their corresponding signature. Notice that dif-
ferent signatures can result in vertices of equal labels. A
macro signature s1 can be searched when every signature s2
such that s1 ⇒ s2 was searched.

Macro signature are of high interest to reduce the num-
ber of signatures that need to be tested. In fact, variations
that affect disjoint parts of a DFG can be searched indepen-
dently. Let us assume an algorithm divided into n disjoint
parts, each of them with ai, 1 ≤ i ≤ n different ways of be-
ing implemented. Without macro signatures, the number of
signatures that have to be tested to cover the full algorithm
is

∏n
i=1 ai. However, using macro signatures, each part can

be searched independently, covering every case with only∑n
i=1 ai signatures. A practical example is given in Section

8.1.
Additionally, macro signatures may be used to break down

large graphs into smaller ones, leading to better perfor-
mances. This strategy is illustrated in Section 8.2.

6.3 Example
We continue the running example and create a signature

for our toy cipher. Assuming we want to locate the param-
eters of our algorithm, the signature should at least contain

one vertex for each of them: the plaintext, the key and the
ciphertext and at least a path linking them together. Al-
though macro signatures were far from being mandatory in
that case, we intentionally choose to use one for illustrating
purpose. We first create a signature that covers the access
to the substitution box (address computation plus memory
read). This signature is then reused in another signature
where the two xor operations and the parameters’ vertices
have been appended. This second signature is complete and
should be able to accurately identify our algorithm. These
signatures and the way they match the normalized DFG of
Figure 4 are shown in Figure 5. A specific label ∗ is used
for input variables. This label can be matched with any
other label (it is mandatory for input variables since they
may have produced by any operation). The two steps of the
parsing process are illustrated in Figure 5. First, on the left
hand side the substitution box signature is being searched.
Second, on the right hand side after appending a new vertex
(drawn in a rounded rectangle with the label sig1) corre-
sponding to the successfull match of the first signature, the
complete signature is being searched.

7. SUBGRAPH ISOMORPHISM
This is the final step of our solution. Given a normalized

DFG and a set of signatures, we want to know which sig-
natures are contained in the DFG. To this end we use the
subgraph isomorphism algorithm proposed by Ullmann [27].
A short description of this algorithm is given as follows.

As a reminder, a graph GA = {VA, EA} is a subgraph
of GB = {VB , EB} if VA ⊂ VB and EA ⊂ EB . A graph
GA = {VA, EA} is said to be isomorphic to GB = {VB , EB}
if there is a function f : VA 7→ VB such that: (v, w) ∈
EA ⇔ (f(v), f(w)) ∈ EB . Given a signature S = {VS , ES}
and a normalized DFG D = {VD, ED}, we want to find all
subgraphs of D that are isomorphic to S. With respect to
the above definitions, our problem can be reformulated as
follows: we want to enumerate every function f : VS → VD

such that:

(v, w) ∈ ES ⇒ (f(v), f(w)) ∈ ED (1)

Subgraph isomorphism can be achieved using a rather sim-
ple depth-first tree-search procedure. For each vertices of the
signature: v ∈ VS , we maintain a set of possible assignment
called Av. Av is initialized with vertices of D that have
the same label than v. The algorithm works by recursively
picking one element in each possible assignment sets such
that condition 1 hold true. The f function is defined by:
f(v) = u where u is the vertex that has been picked in Av.

Ullmann introduced an additional refinement procedure
that takes advantage of the vertices that have already been
picked to reduce the possibilities for future picks. Let v and
w be vertices of S such that (v, w) ∈ ES . Given x ∈ Au,
if there is no vertex y ∈ Aw such that (x, y) ∈ ED, then
x can be removed from Av. In fact, picking x from Av

will necessarily break condition 1. Every time an element
is removed or picked from one of the possible assignment
sets, we apply this new criteria trying to remove as many
elements as possible from the other possible assignment sets.
A pseudo code for Ullmann subgraph isomorphism algorithm
is given in Algorithm 1.

Despite a high theoretical complexity (the subgraph iso-
morphism problem is NP complete) we were able to achieve
acceptable performance using Ullmann algorithm in our con-

Algorithm 1 Ullmann Subgraph Isomorphism

1: function Subgraph Isomorphism(S,D)
2: ∀v ∈ VS initialize Av. ∆← {Av, v ∈ VS}
3: f is undefined for every vertex of VS

4: Recursive Search(S,D, f,∆)
5: end function

6: function Recursive Search(S,D, f,∆)
7: if ∀v ∈ VS , f(v) is defined then
8: f defines a valid subgraph isomorphism ◊
9: else

10: Update(∆)
11: pick v ∈ VS such that f(v) is undefined
12: while Av 6= ∅ do
13: pick u ∈ Av. f(v)← u
14: Recursive Search(S,D, f, copy(∆))
15: remove u from Av and set f(v) undefined
16: end while
17: end if
18: end function

19: function Update(∆)
20: for all (v, w) ∈ ES | f(v) is undefined do
21: for all x ∈ Av do
22: if f is defined for w then
23: Aw ← {f(w)}
24: end if
25: if {y ∈ VD, (x, y) ∈ ED} ∩Aw = ∅ then
26: remove x from Av

27: Update(∆) return
28: end if
29: end for
30: end for
31: end function

text. Experimental data regarding the execution time are
presented and discussed in Section 8.2.

8. EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is to demonstrate

the validity of our approach. It involves two claims in par-
ticular: first that the normalization process is able to effec-
tively remove implementation variations, and second that it
is possible to create graph signatures that match every in-
stance of an algorithm once normalized. For that purpose,
we have implemented a prototype and run it on multiple test
programs. As a first evaluation of our method, we thought
it was more relevant to analyze the performance on syn-
thetic samples rather than to directly confront our prototype
with real life programs. Synthetic samples are convenient to
thoroughly evaluate the solution in well controlled environ-
ments. Furthermore as mentioned in Section 3 our method
takes preselected fragments of binary code as input. It is
clear that the prototype performances depend more on the
fragment’s code rather than on the fragment’s origin. Thus
synthetic samples sound perfectly relevant for our testing
purpose.

Although we do not address the problem of fragment ex-
traction in our work, we list here few heuristics that can be
used as front end filters to extract candidates. These heuris-
tics are taken from the related works discussed in Section 2.

DFG

esp

2

8

load2

load1

sbox

load3

xor

shl

+

+

xor

SBox Signature

*

load

shl

+

DFG

esp

2

8

load2

load1

sbox

load3

shl

+

xor

+

xor

sig1

Complete Signature

* *

xor

xor

sig1

(plaintext) (key)

(ciphertext)

Isomorph

Isomorph

Figure 5: Signature detection: for the two steps of the parsing process we recall the DFG and the signature
that is being searched. The signature match is drawn in black and the rest of the DFG in light gray.

Function. Symmetric cryptographic algorithms are usually
implemented in a single function that does not call any
sub function. Based on this observation we can extract
every function which maps to a vertex with no direct
successor in the call graph.

Constant. As previously stated constants can be used to
identify cryptographic code. Code regions surround-
ing identified constants are good candidates for imple-
menting cryptographic primitives.

Mnemonic. The DFG normalization may modify some in-
struction’s mnemonic. Nevertheless most of them will
remain unmodified (or at least will be changed in an
easily predictable way). A first and effective step would
be to filter code regions based on the mnemonics of
their instructions.

From an implementation perspective the straight line code
requirement is obtained using DBI. During a program exe-
cution, every executed instruction is recorded and then an-
alyzed statically by our prototype.

In this section we present the results we obtained for three
cryptographic primitives: the XTEA block cipher, the MD5
hash function and the AES block cipher. For each of them
two groups of tests were performed. The first group is de-
signed to extensively evaluate the influence of the compiler
and its options on the primitive detection. Given a pub-
licly available reference source code, we compiled it using
several compilers and multiple optimization levels. The sec-
ond group of tests is aimed at assessing the efficiency of
our method on real cryptographic binary code and to show
its resilience to source code variations. To do so we cre-
ated synthetic samples that use well known cryptographic
libraries that were used as distributed in their respective
Debian package.

Finally we discuss the performance of our approach.

8.1 Results on Samples Testing
We will try to justify here why our method does not pro-

duce any false positive. First, the normalization process
preserves the semantics. This is mandatory since semantics
discrepancies amplified by the whole set of rewriting rules
could have dramatic effects on both the false positive and
the false negative ratio. Second, Ullmann algorithm for the
subgraph isomorphism problem returns exact solutions and
not approximations. Thence when a signature is detected,
the code fragment does implement the mechanism described
by the signature. Of course we do not deny that if the sig-
nature is not distinctive enough, it will appear in the DFG
of other algorithms.

XTEA
The first algorithm we have tested is XTEA (a reminder
on XTEA and its implementation is given in Appendix C).
We used one signature for the encryption algorithm and one
signature for the decryption algorithm. They are composed
of approximately 500 vertices each and cover the 32 cycles
of a classical implementation. We evaluated the resilience to
variations in the compilation process by using the C source
code given on the Wikipedia page of XTEA 1. The results
are presented in Table 1.

We use three different compilers with four optimization
levels ranging from −o0 (not optimized) to −o3 (fully op-
timized). Only two levels have been used for MSVC (Mi-
crosoft Visual Studio Compiler), they correspond to the
standard settings of the debug and release mode. Our pro-
totype was able to correctly identify the algorithm in every
case for both encryption and decryption.

The second testing phase involved three cryptographic li-
braries: Crypto++ [2], LibTomCrypt [10] and Botan [1].

1http://en.wikipedia.org/w/index.php?title=XTEA&
oldid=618892433

Table 1: XTEA signature detection for different con-
ditions of compilation.

GCC 4.9.1 Clang 3.5.0 MSVC 17.00
(Linux 32-bit) (Linux 32-bit) (Windows 32-bit)

−o0 ok ok ok
−o1 ok ok -
−o2 ok ok ok
−o3 ok ok -

The identification was successful for these three libraries.
The only difficulty we faced was about the key scheduling.
The XTEA key scheduling is fairly simple, thus it can either
be performed in an early initialization phase resulting in a
round key buffer (as in LibTomCrypt) or it can be directly
computed within the main encryption/decryption loop (as
in Crypto++ or Botan). This difference cannot be removed
by the normalization step, hence it should be dealt with at
the signature level. The option we chose was to remove the
key scheduling from the signature to keep a unique signature
for both versions. Even though the key remains unidentified
it is acceptable since at least, the round key buffer (first ver-
sion) or the key scheduling final operations (second version)
are identified as part of the signature input variables.

MD5
The second algorithm we have tested is MD5 (a reminder
on MD5 and its implementation is given in Appendix B).
For reasons that will soon become apparent we used macro
signatures. Let us assume for the moment the following lay-
out for the signatures: one signature for each different round
functions and a macro signature that congregates the round
signatures to form the 64 rounds of the Feistel network. For
the first series of tests we took the C implementation given
in the appendices of the RFC [24] and we recompiled it us-
ing different compilers and optimization levels. The results
are presented in the Table 2.

Table 2: MD5 signature detection for different con-
ditions of compilation.

GCC 4.9.1 Clang 3.5.0 MSVC 17.00
(Linux 32-bit) (Linux 32-bit) (Windows 32-bit)

−o0 ok ok Partial
−o1 ok ok -
−o2 ok ok Partial
−o3 ok ok -

The identification of the final macro signature represent-
ing the Feistel network was successful except for MSVC. In
the case of MSVC not all of the 64 round signatures were cor-
rectly detected for the second message chunk. Consequently
the final signature, that depends on the correct identifica-
tion of every round, was not detected for the second message
chunk. This problem can be explained in two points that are
detailed as follows.

Rotation. Every round function includes a rotation. Be-
cause there is no rotation operator in the C language, it
has to be implemented using two shift and an or operator.
Some compilers recognize this specific pattern and trans-
late it to the rotation instruction of the x86 instructions set.
However MSVC does not always perform this translation
and sometimes keeps the expanded form. Due to the opti-

mizations performed later by MSVC and to our own rewrite
rules (particularly distributing left shifts over additions for
constant operand, refer to Section 5.3) it would have been
challenging to design a rewrite rule to detect and replace
the expanded form by a single rotation vertex. We choose
to tackle this problem at the signature level. It is a per-
fect example to illustrate the interest of macro signatures.
Each round, after the normalization process, can still be
implemented in two different ways: either with the rotation
operation or with the expanded form. The overall number of
combinations for the 64 rounds is 264. It is obviously impos-
sible to test 264 signatures. Instead, with macro signatures
we only have to double the number of round signatures (from
4 to 8).

Constant state. For the first message chunk the state is
initialized with constant values. Because of the rewrite rules
designed to promote numeric simplification (Section 5.3) op-
erations involving the initial state are merged with surround-
ing operations. It happens in the case of MSVC for the ex-
panded form of the rotation at the beginning of the second
chunk, scrambling the expected signature pattern. This is-
sue is still being investigated and we believe that a more
complete common subexpression elimination algorithm (ca-
pable of removing common subexpression distributed over
several vertices and not only two) might be able to solve
this issue.

We based our second testing phase on the following li-
braries: Crypto++, LibTomCrypt and OpenSSL [3]. The
result were successful and we faced none of the previously de-
scribed difficulties since rotations were always implemented
by the x86 instruction and the initial state was never per-
ceived as constant due to the API design which is such that
the initialization is performed in another function outside
the code fragment.

AES
The last algorithm we tested is the table implementation of
AES (a reminder on AES and its implementation is given
in Appendix A). We built three signatures, one for each
key size. The signatures are the same for encryption and
decryption, only the look up tables change. We choose the
source code provided by Gladman on his website for the first
series of test. The results are presented in the Table 3.

Table 3: AES signature detection for different con-
ditions of compilation.

GCC 4.9.1 Clang 3.5.0 MSVC 17.00
(Linux 32-bit) (Linux 32-bit) (Windows 32-bit)

−o0 ok ok ok
−o1 ok ok -
−o2 ok ok ok
−o3 ok ok -

Our prototype was able to successfully detect the signa-
ture in every case. For the second testing phase involv-
ing well known cryptographic libraries we used Crypto++,
LibTomCrypt and Botan. We were only able to test the
decryption for the Crypto++ library, since the encryption
uses MMX and SSE2 instructions which were not supported
by our DFG creation routine at the time when the tests

were done. Aside from Crypto++’s encryption algorithm
the identification was successful in every cases.

8.2 Performance
The subgraph isomorphism problem is a well known NP-

complete problem, but it can be solved efficiently in the
majority of the cases encountered in our context. Table 4
presents some of the execution times we obtained with our
prototype for the subgraph isomorphism step on a common
laptop computer. Each column corresponds to a code frag-
ment (taken from the LibTomCrypt library) and each row
corresponds to a signature.

Table 4: Execution times for the signature matching
step, on a common laptop computer.

XTEA MD5 AES256

753 vertices 904 vertices 1687 vertices

XTEA 1 cycle
5ms

(16 vertices)
< 1ms < 1ms

XTEA 32 cycles
102ms

(450 vertices)
< 1ms < 1ms

MD5 1 round
9ms

(10 vertices)
< 1ms < 1ms

MD5 64 rounds
26ms

(372 vertices)
< 1ms < 1ms

AES 1 round
442ms

(76 vertices)
< 1ms < 1ms

AES 14 rounds
2.22s

(1012 vertices)
< 1ms < 1ms

When the signature was not detected, the cell is colored
in gray. We first notice that our prototype quickly (< 1ms)
eludes cases where the code fragment does not match the
signature. It is a reassuring result, since it will be the most
common scenario while testing large databases of signatures
with weak fragment selection heuristics. Second, we observe
that large signatures (the ones covering several rounds) take
significantly more time than smaller ones (covering just one
round). Based on that observation, it may be tempting to
use macro signatures to reduce the signature’s size and thus
to achieve better performances. For instance if we split the
AES 14-round signature into two signatures: the first one
covering one round (approximatively 70 vertices) and the
second one linking the 14 rounds together (approximatively
130 vertices), the execution time is reduced: 1.3s instead of
2.3s. However the number of vertices is not the only param-
eter to influence the execution time. Sometimes larger sig-
natures imply stronger structural constrains between their
vertices and the subgraph isomorphism algorithm will be
able converge more rapidly towards the solution.

Regarding the normalization step, every rewrite rule is
linear with the number of vertices, except for the common
subexpression rule which is quadratic (at least for its naive
implementation). However as previously stated, the rewrite
rules are iteratively applied until a fixed-point is reached.
Thus, the execution time also depends on the distance be-
tween the original DFG and its normalized version. In prac-
tice the execution time of the normalization does not exceed
the execution time of the signature matching.

To conclude, despite the theoretical complexity of the un-
derlying algorithm, the execution times we observed on syn-
thetic samples seem acceptable.

9. CONCLUSION
In this paper we presented a new method for symmetric

cryptographic algorithms identification in binary programs.
To this end we introduced a DFG representation. This rep-
resentation was first used in a normalization step designed to
increase the detection capability, by erasing the peculiarities
of each instance of an algorithm. Then, the normalized DFG
was compared to the signatures of database using a subgraph
isomorphism algorithm. Signatures cover the full length of
the algorithm and not only an isolated group of distinctive
instructions. Thus our approach does not produce any false
positive and the input and output parameters of the cryp-
tographic primitive are automatically identified as part of
the signature boundary. We built a prototype and tested
it against several synthetic samples covering three crypto-
graphic algorithms: XTEA, MD5 and AES. We showed de-
tailed results proving that our approach was resistant to a
large range of compilation conditions. We also provided re-
sults on well known cryptographic libraries.

As future work, we plan to cover block cipher modes of
operation by leveraging the concept of macro-signature we
have presented in this paper and we envisage to extend our
approach to automatically identify public key cryptographic
algorithms. In order to make our contribution more practi-
cal for security auditors to support more algorithms, we aim
at automatically generating signatures from reference imple-
mentation. Finally we left for future researches the delicate
problem of dealing with obfuscated code.

10. ACKNOWLEDGMENTS
The authors are grateful to Pierre Karpman for his help

and his useful feedbacks.

11. REFERENCES
[1] Botan. http://botan.randombit.net/.

[2] Crypto++. http://www.cryptopp.com/.

[3] Openssl. https://www.openssl.org/.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Princiles, Techniques, and Tools. Addison-Wesley,
1986.

[5] G. Balakrishnan and T. W. Reps. WYSINWYX: what
you see is not what you execute. ACM Trans.
Program. Lang. Syst., 32(6), 2010.

[6] A. Biryukov. The design of a stream cipher lex. In
E. Biham and A. M. Youssef, editors, Selected Areas
in Cryptography, volume 4356 of Lecture Notes in
Computer Science, pages 67–75. Springer, 2006.

[7] J. Calvet, J. M. Fernandez, and J.-Y. Marion. Aligot:
cryptographic function identification in obfuscated
binary programs. In T. Yu, G. Danezis, and V. D.
Gligor, editors, ACM Conference on Computer and
Communications Security, pages 169–182. ACM, 2012.

[8] C. Clavier and K. Gaj, editors. Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of
Lecture Notes in Computer Science. Springer, 2009.

[9] J. Daemen and V. Rijmen. The Design of Rijndael:
AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer,
2002.

[10] T. S. Denis. Libtomcrypt. http://libtom.org/.

[11] S. Even and Y. Mansour. A construction of a cipher
from a single pseudorandom permutation. J.
Cryptology, 10(3):151–162, 1997.

[12] D. Genkin, A. Shamir, and E. Tromer. RSA key
extraction via low-bandwidth acoustic cryptanalysis.
In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 444–461. Springer,
2014.

[13] F. Gröbert, C. Willems, and T. Holz. Automated
identification of cryptographic primitives in binary
programs. In R. Sommer, D. Balzarotti, and G. Maier,
editors, RAID, volume 6961 of Lecture Notes in
Computer Science, pages 41–60. Springer, 2011.

[14] I. Guilfanov. Findcrypt2.
http://www.hexblog.com/?p=28, February 2006.

[15] S. Halevi, W. E. Hall, and C. S. Jutla. The hash
function ”fugue”. IACR Cryptology ePrint Archive,
2014:423, 2014.

[16] M. Hamburg. Accelerating aes with vector permute
instructions. In Clavier and Gaj [8], pages 18–32.

[17] E. Käsper and P. Schwabe. Faster and timing-attack
resistant aes-gcm. In Clavier and Gaj [8], pages 1–17.

[18] J. Kelsey, B. Schneier, and D. Wagner. Related-key
cryptanalysis of 3-way, biham-des, cast, des-x, newdes,
rc2, and TEA. In Y. Han, T. Okamoto, and S. Qing,
editors, Information and Communication Security,
First International Conference, ICICS’97, Beijing,
China, November 11-14, 1997, Proceedings, volume
1334 of Lecture Notes in Computer Science, pages
233–246. Springer, 1997.

[19] W. M. Khoo, A. Mycroft, and R. Anderson.
Rendezvous: a search engine for binary code. In
T. Zimmermann, M. D. Penta, and S. Kim, editors,
Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, pages
329–338. IEEE / ACM, 2013.

[20] N. Lutz. Towards revealing attacker’s intent by
automatically decrypting network traffic. Master’s
thesis, ETH Zurich, July 2008.

[21] J. Manger. A chosen ciphertext attack on RSA
optimal asymmetric encryption padding (OAEP) as
standardized in PKCS #1 v2.0. In J. Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings,
volume 2139 of Lecture Notes in Computer Science,
pages 230–238. Springer, 2001.

[22] M. Matsui and J. Nakajima. On the power of bitslice
implementation on intel core2 processor. In P. Paillier
and I. Verbauwhede, editors, CHES, volume 4727 of
Lecture Notes in Computer Science, pages 121–134.
Springer, 2007.

[23] P. Q. Nguyen. Can we trust cryptographic software?
cryptographic flaws in GNU privacy guard v1.2.3. In
C. Cachin and J. Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of

Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, volume 3027 of Lecture
Notes in Computer Science, pages 555–570. Springer,
2004.

[24] R. Rivest. The MD5 Message-Digest Algorithm. RFC
1321, April 1992.

[25] A. Sæbjørnsen, J. Willcock, T. Panas, D. J. Quinlan,
and Z. Su. Detecting code clones in binary
executables. In G. Rothermel and L. K. Dillon,
editors, Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA
2009, Chicago, IL, USA, July 19-23, 2009, pages
117–128. ACM, 2009.

[26] E. Tromer, D. A. Osvik, and A. Shamir. Efficient
cache attacks on aes, and countermeasures. J.
Cryptology, 23(1):37–71, 2010.

[27] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 23(1):31–42, 1976.

[28] S. Vaudenay. Security flaws induced by CBC padding
- applications to ssl, ipsec, WTLS ... In L. R.
Knudsen, editor, Advances in Cryptology -
EUROCRYPT 2002, International Conference on the
Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings, volume 2332 of Lecture Notes in
Computer Science, pages 534–546. Springer, 2002.

[29] R. Wang, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna. Steal this movie: Automatically bypassing
DRM protection in streaming media services. In S. T.
King, editor, USENIX Security, pages 687–702.
USENIX Association, 2013.

[30] X. Wang, N. Zeldovich, M. F. Kaashoek, and
A. Solar-Lezama. Towards optimization-safe systems:
analyzing the impact of undefined behavior. In
M. Kaminsky and M. Dahlin, editors, ACM SIGOPS
24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 260–275. ACM, 2013.

[31] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
Reformat: Automatic reverse engineering of encrypted
messages. In M. Backes and P. Ning, editors,
ESORICS, volume 5789 of Lecture Notes in Computer
Science, pages 200–215. Springer, 2009.

[32] D. J. Wheeler and R. M. Needham. Tea, a tiny
encryption algorithm. In B. Preneel, editor, Fast
Software Encryption: Second International Workshop.
Leuven, Belgium, 14-16 December 1994, Proceedings,
volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer, 1994.

[33] T. Xie, F. Liu, and D. Feng. Fast collision attack on
MD5. IACR Cryptology ePrint Archive, 2013:170,
2013.

[34] R. Zhao, D. Gu, J. Li, and R. Yu. Detection and
analysis of cryptographic data inside software. In
X. Lai, J. Zhou, and H. Li, editors, Information
Security, 14th International Conference, ISC 2011,
Xi’an, China, October 26-29, 2011. Proceedings,
volume 7001 of Lecture Notes in Computer Science,
pages 182–196. Springer, 2011.

APPENDIX
A. AES IMPLEMENTATION REMINDER

The Advanced Encryption Standard (AES) [9] is a Sub-
stitution Permutation Network (SPN) that can be instanti-
ated using three different key bit-lengths: 128, 192, and 256.
The 128-bit plaintext initializes the internal state viewed
as a 4 × 4 matrix of bytes seen as elements of the finite
field GF (28), which is defined via the irreducible polyno-
mial x8 + x4 + x3 + x + 1 over GF (2). Depending on the
version of the AES, Nr rounds are applied to that state:
Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. Each of the Nr AES round applies four op-
erations to the state matrix (except the last one where the
MixColumns is omitted):

• AddRoundKey : adds a 128-bit subkey to the state.

• SubBytes: applies the same 8-bit to 8-bit invertible S-
Box S 16 times in parallel on each byte of the state.

• ShiftRows: shifts the i-th row left by i positions.

• MixColumns: replaces each of the four column C of the
state by M ×C where M is a constant 4× 4 maximum
distance separable matrix over GF (28).

After the Nr-th round has been applied, a final subkey is
added to the internal state to produce the ciphertext. A key
expansion algorithm is used to produce the Nr + 1 sub keys
required for all AES variants.

From an implementation perspective, the ShiftRows and
the MixColumns can be combined with the SubBytes result-
ing in 4 lookup tables of 1 kilobyte each. We introduce the
following notations: Ai is the state at round i, divided in
four 32-bits word and Ti (0 ≤ i ≤ 3) is a function that
given a 32-bit word, extracts the ith most significant byte
and returns the associated 32-bit word in the ith lookup ta-
ble. For each full round (1 ≤ i ≤ Nr − 1), the combination
of the ShiftRows, MixColumns and SubBytes can be imple-
mented using the following pseudo code (we have omitted
the AddRoundKey for brevity):

Ai+1[0] = T0(Ai[0])⊕ T1(Ai[1])⊕ T2(Ai[2])⊕ T3(Ai[3])

Ai+1[1] = T0(Ai[1])⊕ T1(Ai[2])⊕ T2(Ai[3])⊕ T3(Ai[0])

Ai+1[2] = T0(Ai[2])⊕ T1(Ai[3])⊕ T2(Ai[0])⊕ T3(Ai[1])

Ai+1[3] = T0(Ai[3])⊕ T1(Ai[0])⊕ T2(Ai[1])⊕ T3(Ai[2])

This implementation is the most widespread and it is usu-
ally referred to as the tables implementation. However, it is
not the only way to efficiently implement the AES. Matsui
et al. [22] and Käsper et al. [17] proposed two bitsliced
implementations. In bitsliced modes, several blocks are pro-
cessed in parallel taking advantage of the SMID architecture.
Nevertheless bitsliced can only be used in parallel modes of
operation (such as the counter mode for instance). Hamburg
[16] demonstrated that it is feasible to implement a single
block AES encryption with vector permute instructions. Fi-
nally recent CPUs have dedicated AES instructions to reach
the best performances and the highest security levels. These
alternative implementations have been mentioned here for
completeness. This work only covers the tables implemen-
tation.

B. MD5 IMPLEMENTATION REMINDER
MD5 [24] is a cryptographic hash function that given a

message of any size produces a 128-bit hash. The message
is divided into 512-bit chunks with a padding being applied
to the last chunk. The MD5 algorithm is based on a four-
branch Feistel network that operates on a 128-bit state. It
is composed of 64 rounds. We use the following notations:
fi is the round function of round i, {ki, 1 ≤ i ≤ 64} is a
set of specific constants, M is an input message chunk and
(A1,i, A2,i, A3,i, A4,i) is the 128-bit state at the beginning of
round i, divided into four words of 32 bits. At each round
(1 ≤ i ≤ 64) the state is updated according to the following
equations:

A1,i+1 = A4,i

A2,i+1 = fi(A1,i, A2,i, A3,i, A4,i,M, ki)

A3,i+1 = A2,i

A4,i+1 = A3,i

The round function fi contains a boolean function that
changes every 16 rounds (4 distinct boolean functions are
used for the 64 rounds). Apart from this boolean function,
the round function remains the same for every round. Usu-
ally the 64 rounds are directly unrolled in the source code.
This is for instance the case of the C source code given in
the appendix of the RFC).

For the first two series of rounds (round 1 to 16 and round
17 to 32) two different formulas might be used to compute
the boolean functions. A different formula that the one pro-
vided in the RFC might be used for improved efficiency (it
can be implemented using fewer bitwise instructions).

C. TEA & XTEA IMPLEMENTATION RE-
MINDER

Tiny Encryption Algorithm (TEA) [32] is a 64-bit block
cipher with a 128-bit key. It is based on a two-branch Feistel
network that operates on a 64-bit state. Rounds are usually
regrouped in pairs forming cycles. The recommended num-
ber of cycles is 32. However TEA suffers from related-key
attacks [18]. To solve this weakness Needham and Wheeler
proposed an extended version of TEA named XTEA. XTEA
has a different key scheduling and a different round function.

Both TEA and XTEA have been designed as small C pro-
grams performing simple operations on 32-bit words. The
only implementation variation we are aware of concerns the
key scheduling. Since the key scheduling is extremely sim-
ple some implementations do not compute the round keys
separately but they do it directly in each round.

