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Abstract—Machine learning is nowadays increasingly used in
cyber-security. While intrusion detection was mainly based on
human expertise in the 1990s, learning models to predict attacks
are now built from data. However, a large part of the developed
learning algorithms hitherto has missed real-world issues, making
them unpractical. Indeed, many supervised algorithms described
in the literature have been trained and tuned only on the KDD99
dataset. Besides, these algorithms are often static and are unable
to automatically adapt for detecting attacks depending on the
network traffic. Consequently, we are far from detecting zero-day
or more general Advanced Persistent Threats (APT) since only
pre-registered and well-characterized attacks can be catched.
Some recent systems use unsupervised ML algorithms, but the
resulting tools are overly complex: many ML components are
stacked with various tuning parameters, usually making the
results hard to interpret. And finally, a strong ML/DM expertise
is required to set up these systems on real networks.

We present netspot, a very simple network intrusion detec-
tion system (NIDS) powered by SPOT, a recent streaming statis-
tical anomaly detector. This statistical test uses Extreme Value
Theory, which is a powerful method for detecting anomalies.
Unlike all the previous works, it is not an end-to-end solution
aimed to detect all cyber-attacks with packet resolution. It is
rather a module providing a behavioral information which can
be integrated in a more general monitoring system. netspot
is simple: it has few (simple) parameters, it adapts along time
to the monitored network and it is as fast as current rule-
based methods. But most importantly, it is able to detect real-
world cyber-attacks, making it a credible practical anomaly-
based NIDS.

Index Terms—Network security; Intrusion detection systems;
Statistical Learning.

I. INTRODUCTION

Intrusion detection systems (IDS) are based on the following
approaches: they use either static rules or they search for
anomalies. Today, rule-based solutions are very efficient, more
mature, and are the most widely deployed IDS (like Snort1,
Zeek2 or Suricata3). They however require for each attack
to find a signature that can be easily detected by analyzing net-
work packets. Such approach has several weaknesses: building
signatures is lengthy and laborious, the payload is likely to
be inspected although it is an expensive task which will soon

1https://www.snort.org/
2Formerly known as Bro, https://www.zeek.org/
3https://suricata-ids.org/

become deprecated with the wide use of end-to-end encryption
and eventually, these rule-based methods are static thus new
attacks cannot be detected.

Anomaly-based techniques aim at building a model of
normality (in a supervised or unsupervised way) in order to
discriminate abnormal observations (often considered as at-
tacks). Such kind of behavioral detection, often using machine
learning techniques, is often disregarded by security experts.
The first reason explaining why AI failed in cyber-security
while it revolutionizes other fields is the context specificity.
Solving the GO game, recognizing human faces or making a
car autonomous are real feats but detecting zero-day attacks
seems far harder. Designing algorithms to detect attacks meets
the pitfalls of:

1) All the networks are different, so adaptable techniques
are paramount;

2) To detect new attacks, algorithms must not be stuck
to training observations, so supervised methods are not
suitable;

3) As the context is constantly evolving, dynamic models
are preferred;

4) Online detection is required to prevent systems from
being damaged as soon as possible.

Much work has been done to develop anomaly detectors
with the help of cutting edge algorithms, and smarter IDS
have been proposed [1]. However, current approaches aim to
solve all the intrusion detection issues by providing a single
complex end-to-end solution. This is maybe a too ambitious
task in the light of the latest real progresses. Moreover, this
search for complexity leads to impractical detection pipelines:
many modules must generally be interfaced, multiplying the
number of parameters to set, and making difficult general
understanding as well as integration in different systems.

Related work on unsupervised anomaly-based IDS. Here
we present two anomaly-based IDS which represent, up to
our knowledge, the best unsupervised IDSs. These approaches
differ from other works insofar as their goal is to build real-
world IDS (unsupervised algorithm, real-world experiments).
Even if these works mark out the real progress in this field,
the proposed algorithms still have some drawbacks.

UNADA [2] performs anomaly detection in network flows
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through aggregated statistics monitoring and sub-space cluster-
ing. Initial data are basic network flows (like Cisco NetFlow4).
For all the incoming flows, UNADA computes statistics (batch
aggregation) at different network levels (source and destination
with masks from /8 to /32). All these statistics are monitored
along time (multiple time series) and an algorithm F detects
some changes. When a change occurs, the initial flows are re-
aggregated at IP level only (source and destination), building
then a matrix X which contains n observations (number of
different IP) of p features (aggregated statistics). Clustering
algorithms (DBSCAN [3]) are applied in all 2-dimensional
sub-spaces. Each of them computes a score for all the ob-
servations. For all the observations, the sub-spaces clustering
scores are weighted to finally output a final score. Eventually,
a threshold is used to decide which observations are really
abnormal among the initial data slots. From the ML/DM point
of view, the whole approach is both logical and cumbersome.
Every steps are coherent but the pipeline requests many
operations: aggregations at many levels, anomaly detection
for all the features for each aggregation level and sub-spaces
clustering. Its implementation is then not easy as it needs to
interface several different modules. Besides some points are
not clarified: what change detection algorithm F to use? Such
an algorithm is also very likely to request parameters. What
threshold to use in the end of the pipeline? A static threshold
can suffer from a lack of adaptability. Authors suggest to use
an elbow method on the scores but the way to compute such
a threshold is not given. The parameter values of DBSCAN
also needs to be tuned to avoid incoherent results.

Kitsune [1] is a more recent network intrusion detection
system (NIDS). It maxinly uses auto-encoders (AE) to perform
anomaly detection, which are a type of artificial neural network
used to learn efficient data codings in an unsupervised manner.
Their goal is to learn a representation for a dataset, for
dimension reduction, by training network and removing noise.
The first phase of autoencoders consists of neural network to
compress the signal into a small number of neurons (encod-
ing), and the second phase attempts to reconstruct the instance
features and compute the reconstruction error in terms of root
mean squared errors (RMSE). In Kitsune, the RMSEs are
forwarded to an output autoencoder, which acts as a non-linear
voting mechanism for the whole system. Autoencoders need to
be trained before any execution. The first issue is that data are
assumed as normal during the training phase, which is a very
strong assumption in the cyber-security. In practice, a clean
network cannot be ensured. This is obviously a key assumption
in the Kitsune design and there is no clear idea about its
behavior in case of data contamination during the training step.
Furthermore, unlike UNADA, Kitsune learns once and then
executes without updating its knowledge. Actually, once the
AE are learned, the feature mapper cannot change otherwise
AE must be re-trained (with normal data). Kitsune is static
and that may be a real problem if a constantly evolving traffic

4https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/
index.html

is monitored. Auto-encoders are very powerful but they also
suffers from their lack of interpretability. When a packet is
declared as abnormal, it is hard to understand the reason. The
pipeline can also be difficult to understand: using the RMSE of
initial auto-encoders to feed another AE is rather uncommon.
The goal of the authors was to avoid a single “high” auto-
encoder which is expensive to train. Besides, some of their
best results have been made with one hidden neuron meaning
that an AE is used to monitor every feature. In this context, all
these AE basically contain 3 neurons: one input, one hidden
and one output. We can naturally question the relevance of this
architecture. Moreover, like UNADA, many choices are let to
the users which does not ease its setup: statistics to compute,
values of the decay factor, value of the AE compression rate,
the maximum height of an AE, and the decision threshold.
These two examples show that modern IDS are actually really
difficult to set up on real networks. netspot relies on an
opposite approach with a simple pipeline.

Contributions. In this paper, we take an opposite approach
to anomaly detection and show that “simple can be beautiful”
for the detection of network attacks. We propose netspot,
a novel network IDS built on top of the powerful anomaly
detector SPOT [4]. SPOT is a recent statistical anomaly detec-
tor that brings several key properties for network monitoring.
First, it has only one important parameter to set, which is easy
to understand and can be directly correlated to the number
of alarms raised per day. Second, it does not make any
assumption on the underlying distribution of the data and can
handle concept-drift, making it well suited for unknown traffic.
And last, it is computationally efficient and can handle high
throughput data streams. netspot computes statistics over
the network traffic information, and uses SPOT to quickly
and flexibly detect anomalies in these statistics. This NIDS
works at the network access, internet and transport layers of
the communication model. This is an important feature to
use such information in order to take into account increasing
end-to-end encrypted communications as 80% of the web
traffic is nowadays encrypted [5]. Experiments on real-world
network datasets with realistic attacks show that netspot
detects quickly and accurately attacks, while being able to
reach a higher throughput than state-of-the-art approaches. In
particular, we reuse the dataset provided by [1] and we are able
to detect all the attacks present in the Kitsune dataset. There
are 4 types of attacks (Botnet Malware with Mirai), Denial
of Service (SSDP Flood, SYN DoS and SSL Renegotiation),
Man in the Middle (Video Injection, ARP MitM and Active
Wiretap), and Reconnaissance (OS Scan and Fuzzing) [1] table
3 page 11. We present here one in each category with graphs,
but they are all detected.
netspot is thus relevant as an early warning component

of a larger Security Information Management (SIM) solution,
which can be easily deployed, can quickly detect suspicious
behaviours, and let more complex tools to pursue the analysis
on the found suspicious traffic.

Organization of the paper. The SPOT algorithm, which is
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the core of netspot is introduced in section II. In section
III, the architecture of netspot is explained and in the last
section, we present some real-world experiments and compare
this tool with other systems.

II. THE SPOT ALGORITHM

We introduce the anomality detector SPOT which is the
statistical test on which relies our IDS tool.

A. Motivation

The common point of the vast majority of anomaly detectors
is that they rely on scores. Every algorithm computes a
normality or abnormality score si for all the observations xi.
But the whole anomaly detection process is made in two parts:
scoring and thresholding.

The scoring part is generally the most interesting operation
and the scores must describe the “outlierness” of an observa-
tion. Then a threshold z is often used in back-end to make
the final decision (thresholding part): if si > z then xi is
flagged as an anomaly otherwise it is considered as normal
(si can be seen as abnormality score). There is little interest
in the thresholding stage. In many works only the scoring part
is detailled: the ROC curves and AUC are used to assess the
performance of the anomaly detector [6]–[8]. When the whole
detector is presented, decision thresholds are usually set after
a fine-tuning step to get the best results on some datasets but
either no formal procedure exists for setting the thresholds or
it may require some labels to set it in practice [9].

This gap may lead to an obvious practical issue, that can
be notably observed on the two aforementioned IDS: given
some data and a scoring algorithm, how to set the decision
threshold? Such a problem particularly arises when the con-
text changes (other data sources, concept drift etc.). Another
problem is the lack of interpretability: scores have generally no
meaning (except that they smartly rank the observations) so the
final threshold-based decision is likely to be hard to explain.
The SPOT algorithm [4] described below tackles these issues
by computing and updating a meaningful threshold (quantile)
over streaming data.

B. SPOT

SPOT [4] is a streaming univariate anomaly detector based
on Extreme Value Theory (EVT). As a statistical method,
its final task is to build a decision threshold zq which is
actually a quantile. It computes zq such that P(X > zq) = q
where X represents the monitored data and q is the main
user-defined parameter. In practice q is very low (10−5 for
instance), meaning that observing X higher than zq is very
improbable, so abnormal.

If we know the distribution of X , computing a quantile is
rather easy. The main strength of SPOT is its ability to work
almost on any stream without distribution assumption. This is
possible thanks to EVT, which builds a local model on the tails
on the distribution of X . Extreme Value Theory is built upon
the Fisher-Tippett-Gnedenko theorem [10], [11] which says
that the distribution of the maximum of n iid random variables

converges in distribution to a certain class of distributions. It
is very analogous to the central limit theorem which provides
such a result for the mean.

In practice, it uses the Pickands-Balkema-de Haan theorem
[12], [13] which gives a model for data above a “high”
threshold:

P (X − t > y | X > t) '
t→τ

(
1 +

γ y

σ

)− 1
γ

,

where τ represents the limit of the support of X (it could be
+∞). This result merely means that the tail of the distribution
of X can be approximated by a Generalized Pareto Distribu-
tion (GPD) with parameters γ ∈ R, σ > 0 to estimated (see
figure 1).

t
X

GPD(γ, σ)

Fig. 1. Model for the distribution tail

Based on a sample X1, . . . Xn a maximum likelihood
estimation is performed in [4]. Once these parameters are
estimated, the desired quantile zq can be computed as follows:

zq = t+
σ

γ

((
q n

Nt

)−γ
− 1

)
, (1)

where q is the probability P(X > zq) set by the user and
Nt is the number of observations above t. The power of this
method is the ability to compute zq accurately with q as low
as desired, i.e. without observations in the expected region of
zq .

How does SPOT adapt this method to streams? The figure 2
describes the stages: it takes an initial batch of data, selects the
value of t, performs a GPD fit with the data above t and then
computes zq with equation (1). This threshold zq is then used
to flag anomalies (data above zq) in the stream. The model
is updated when data between t and zq are observed (normal
data in the tail).

zq

X1 Xn

batch
Xn+1

stream
· · ·

t

time

1© Get a batch
of n data

2©
Compute a high
quantile t

3©
Perform a GPD fit and
compute a first threshold zq

4© Use zq to detect
anomalies

Fig. 2. Anomaly detection overview (calibration)
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C. Parameters and algorithm

We should naturally discuss about the parameters of SPOT.
The most important parameter is q which estimates what is
an abnormal event using probability. Given this probabilistic
meaning, it should be set according to the user needs. In
the cyber-security context one can imagine analyzing N =
1000000 events a day. Setting q = 5.10−5 should flag around
q ×N = 50 anomalies per day, which is quite reasonable for
a security analyst to check. SPOT has two other parameters
t and n that are less important in practice once some simple
rules are given. The greater t is (the closer to τ ), the more
faithful the approximation is. Thus t should be taken as high
as possible. However, as several observations are needed to
estimate γ, σ (to reduce variance), t should not be too high.
In practice, we do not set t but we use a high quantile
pt = P(X > t) = 98% or 99% to compute it from the first n
observations (e.g. 1000 or 2000).

This algorithm deals with stationary streams but it can be
adapted to drifting ones with the computation of a local model
(a moving average for example): DSPOT algorithm [4]. In this
case, SPOT merely flags peaks relative to the current model
and this feature requires one additional parameter d (the model
depth). As SPOT corresponds to the case d = 0 so we will
use the term SPOT to denote either SPOT or DSPOT.

III. ARCHITECTURE OF NETSPOT

We present a new NIDS we developed around the SPOT al-
gorithm, called netspot. Unlike previous approaches which
provide complex end-to-end solutions, we opt for a simple
design which can be integrated in a more general detection
system. Our goal was to build a simple IDS with a statistical
learning core (SPOT) able to provide a relevant behavioral
information about the network traffic. netspot does not aim
to replace rule-based IDS but to propose a credible anomaly-
based IDS, which by design tries to fill in the gaps of the
legacy methods.
netspot is implemented in Go, for performance and

concurrency reasons. Keeping in mind the practical stakes,
we made netspot available on Github5. In addition to the
source code, it is distributed through debian packages and
docker images Here we use the latest available version
(1.3.1) but a new version with better performances in under
active development (2.0a).

Strategy. Network anomaly detection is a hard task since the
outliers are not clearly known. It means that there is not an
obvious framework to catch all of them. The first part is the
choice of the features of interest. One may naturally try to
feed algorithm with hundreds of them to widen the detection
range but it implies to use complex algorithms able to tackle
high-dimensional data (like neural networks). Their training
cost (data and time) is generally too high to embed them on
live detection solutions.

5https://github.com/asiffer/netspot

One solution would be to aggregate these features by
computing a distance in the feature space for instance. Un-
fortunately, this kind of computation really suffers from the
curse of dimensionality. By considering a dimension reduction
technique one may struggle against this issue. Henceforth, the
main problem is that all the interpretability is lost: when an
anomaly occurs, the latter can only be described in the reduced
feature space, making it inexplicable from the operator’s point
of view. It is undoubtedly the first criticism the security experts
make towards ML/DM techniques.

Thus, one reasonable strategy is then to use a small number
of features and avoid too complex operations between them.
The choice of the features should also be led by the network
security expertise to cover some categories of attacks.

One critical part of the anomaly detection pipeline is the
thresholding part. Given some time series, we can easily find
a constant threshold able to discriminate what would look like
an anomaly. Now, let us consider the monitoring of several
statistics along time: we must manually define a threshold for
each of them. Actually, we also know that these statistics are
likely to drift, so the normal/abnormal frontier. Hard-coded
thresholds are definitely not a maintainable solution. Why
not using a µ ± 3σ rule? In many case, it is a reasonable
solution however these thresholds have a meaning only if the
monitored statistics are gaussian distributed (quantile at 95%).
Furthermore such a choice can become totally inefficient (too
many or too few alerts raised) once the real distribution is not
close enough to the normal one.

Eventually, our strategy is the following: using the SPOT al-
gorithm to automatically compute/update a meaningful thresh-
old (quantile) on several expert-defined network statistics. It
clearly circumvents all the issues mentioned above. Obviously
it would be nice to extend SPOT to multivariate distributions
since cyber attacks are usually described using 2 or 3 features
as most attacks can be identified by a combination of a small
number of alarms [2]. However, this is a well-known open
problems in statistics which is very difficult. Consequently,
we rely on the more simple task of identifying these alarms
individually. Actually, we will see that this choice is sufficient
to detect real-world cyber-attacks.

Design. In a nutshell, netspot monitors network statistics
with the SPOT algorithm. At the basis, netspot incre-
ments some network counters once a packet is received. This
operation is light as the counters mainly perform “atomic”
operations (e.g. looking at flag, retrieving an IP address,
computing the packet size etc.) This part of the program is
called the MINER and uses the GoPacket6 library, wrapping
around the libpcap7 library, to parse network packets. This
also allows to process packets from network capture files (e.g.
.pcap) and network interfaces without any distinction.

Figure 3 illustrates the MINER’s task. When a packet is in-
coming, the MINER extracts some layers if they exist: Ethernet,
IP, ICMP, TCP and UDP. Every layer will be useful only for

6https://github.com/google/gopacket
7https://www.tcpdump.org/
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libpcap

gopacket

network

packet layers

IPSYN ARP ... counters

Fig. 3. The MINER component. It parses network packets, extracting layers
and dispatching them so as to increment the counters

specific counters, so the MINER dispatches them according
to the counter needs. For example, the IP counter can only
receive IP layers and it increments an internal accumulator
every time it receives such a layer. But the SYN counter, which
accepts only TCP layers, increments itself once the received
TCP layer has a SYN flag set to 1.

Above the MINER, we built the ANALYZER which manages
the network statistics. The statistics merely need counters
to be computed. For instance, the R_SYN statistic (ratio of
SYN packets) divides the SYN counter by the IP counter. At
given intervals (e.g. every 5 seconds), the ANALYZER asks the
MINER the counter values and computes the statistics. This
statistic corresponds then to the ratio of SYN packets during
the last 5 seconds (the ANALYZER also asks the MINER to
reset its counters).

The statistics are not as basic as the counters (i.e. elements
making a single computation) because they embed a SPOT
instance (or more generally a DSPOT instance) which moni-
tors what they compute in real time. Finally the ANALYZER
has three outputs: the raw statistics, the SPOT thresholds and
some alerts (see figure 4).

IPSYN ARP ... counters

R_SYN

SPOT

R_ARP

SPOT

statistics
...

SPOT

alarms

thresholds

raw data

Fig. 4. The ANALYZER: statistics request periodically counter values, compute
stats and feed them to an embedded SPOT instance, which can trigger alerts

Command & Control. netspot runs as a server (through

a systemd service or a docker container) and can be
managed by clients. The server can be configured through a
simple file or through command line arguments. In particular,
some statistics can be loaded and their SPOT instances can be
individually parameterized.

We also developed a Go client (command line interface),
called netspotctl, which currently uses the RPC facil-
ities provided by Go to interact with the server. However,
netspot also exposes a REST API, with an OpenAPI8 spec-
ification, making the implementation of other HTTP clients
rather easy and even “automatable”.
Integration. Currently, netspot outputs three JSON files,
described in figure 4: the raw statistics, the thresholds com-
puted by SPOT (one for each statistic) and the alarms (when a
value is beyond a threshold). However netspot is also able
to send these information to an influxdb9 database, which
is “a time series database designed to handle high write and
query loads”. Such a storage eases the information aggrega-
tion. For instance Security Information and Event Management
softwares (SIEM) are likely to handle real-time data from
multiple heterogeneous sources. Using such a technology to
store events makes netspot easier to integrate in a general
monitoring system. At a first level, one can use a visualization
technology upon influxdb, like Grafana10, to build a
dashboard showing the netspot events (see figure 5).

Fig. 5. Example of a Grafana dashboard to visualize the netspot output

Modularity. netspot can also be adapted to specific needs.
Indeed, the main abstractions behind netspot are the coun-
ters and the statistics. A developer can easily implement its
own counters and then its own statistics. Thus, one may
imagine the need to monitor the activity of some particular
IP addresses or sub-networks (like a server or the external
network). In this example, new counters and new statistics
(written in Go) should be added to the sources and netspot
must be re-compiled. Especially, we provide a simple process
for the developer to enrich netspot at his convenience.

IV. EXPERIMENTS

In this section we give some experiments performed using
netspot. First, our IDS is confronted with various real-world

8https://www.openapis.org/
9https://www.influxdata.com/products/influxdb-overview/
10https://grafana.com/
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attacks. We use the dataset used by Kitsune [1] and netspot
was able to detect all the attacks present in this dataset. We
will see that these attacks are likely to disrupt the network
traffic and this can be detected by monitoring some relevant
statistics.

Second, the performances of netspot in terms of packet
processing will be analyzed. This experiment shows that
netspot is comparable to a signature-based IDS and also
10x faster than the state-of-art in network anomaly detection
(Kitsune).

A. Netspot facing real-world attacks

First we test netpot on several real-world scenarios pro-
vided in [1]. Our results justify the “simplicity” of netspot:
monitoring single statistics is enough to detect cyber-attacks.
There are 4 types of attacks (Botnet Malware with Mi-
rai), Denial of Service (SSDP Flood, SYN DoS and SSL
Renegotiation), Man in the Middle (Video Injection, ARP
MitM and Active Wiretap), and Reconnaissance (OS Scan
and Fuzzing) [1]. We present here one in each category with
graphs, but they are all detected.

SYN DoS. In this first scenario, an attacker “disables a
camera’s video stream by overloading its web server”. This
is a classical deny-of-service (DoS) attack which floods a
system by sending a huge amount of SYN packets. The ratio
of SYN packets (number of TCP packets with SYN flag over
the number of IP packets) is then a natural statistic to catch
such attack. The figure 6 shows the monitoring by netspot.
One may observe that the threshold learned (dashed line) on
the first value allows to flag abnormal events occurring in the
end (red spots).
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Fig. 6. Monitoring of the ratio of SYN packets (500ms time window) to
detect DoS attack

Besides, this attack also impacts the ratio of ACK packets.
When a user sends a SYN packet, the server responds with
SYN-ACK packet and waits for a last ACK packet from the
user (3-way TCP handshake). In this scenario, the attacker
sends the first SYN packet but he ensures that the last ACK
packet will not be sent (spoofed or rogue IP can be used). So
the server waits for the ACK packet. If many SYN packets
have been sent, the server will use all its resources waiting

for ACK packets. A legitimate user who sends a new SYN
packet will not have the SYN-ACK reply (denial-of-service).
At this moment, the number of ACK packets intuitively falls.
The figure 7 particularly illustrates this phenomenon during
the attack. By computing a lower threshold (dashed line),
netspot can easily flags the fall of the ratio of ACK packets.
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Fig. 7. Monitoring of the ratio of ACK packets (500ms time window) to
detect DoS attack

SSL renegotiation. This attack is similar to the previous
one insofar as it leads to a denial of service. This scenario
exploits the vulnerability CVE-2009-355511 which affects TLS
and SSLv3 protocols. Once a client has established a secure
connection (SSL/TLS) with a server, he can renegotiate a con-
nection (and start a new handshake) if the SSL-renegotiation
is activated on the server. However, a SSL/TLS handshake
requires at least 10 times more processing power on the server
than on the client. Therefore a malicious client can request
many re-negotiations to overload the server.
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Fig. 8. Monitoring of the ratio of ACK packets (1s time window) to detect
SSL renegotiation attack

In [1], this attack is performed on a camera (to disable its
video stream) and the figure 8 particularly shows how the ratio
of ACK packets behaves. Like in the SYN flood example,
many drops occur during the attack, highlighting a denial of

11https://access.redhat.com/security/cve/cve-2009-3555
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service from the camera. We can check that the lower threshold
computed by SPOT is able to detect these abnormal events.

Mirai. Mirai is a malware aiming at infecting Linux devices
(notably IoT devices). Once several systems are infected, the
created botnet can then be used to launch Distributed Denial-
of-Service attacks (DDoS). Among highly publicized Mirai
attacks, one can mention the attack on OVH12 (French web
host) in September 2016 and the attack on Dyn13 (DNS
provider) in October 2016.

Once Mirai has infected a system, it tries to infect others.
For that purpose, it scans the network so as to discover
potential targets. A simple solution to scan the neighborhood is
to broadcast ARP (Address Resolution Protocol) probe packets
and wait for responses. Indeed, ARP is basically used to
find MAC address associated to a given IP address. When
a host receives an ARP probe, it sends back its IP and MAC
addresses.

The experiment proposed in [1] considers an IoT Wi-Fi net-
work (3 PC and 9 IoT devices) with a security camera infected
by a real sample of the Mirai malware. The corresponding
network capture notably records this attack discovery stage.
The figure 9 shows the detection by netspot of the Mirai
scan.
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Fig. 9. Monitoring of the ratio of ARP packets (1s time window) to detect
Mirai activity

Active Wiretap. In this last scenario, an attacker “intercepts
all LAN traffic via active wiretap (network bridge) covertly
installed on an exposed cable”. Practically, a Raspberry Pi (in
promiscuous mode) is plugged on a switch and eavesdrops the
local network. To detect such an attack, we may wonder what
happens when an Ethernet cable is plugged. Naturally, it also
starts with a discovery phase where the new system asks the
LAN who is connected at some IP addresses. Possibly other
requests can occur according to the system (network time,
name resolution etc.).

Like Mirai, many ARP packets are likely to be broadcast
on the network. On figure 10, we can observe the behavior
of the ratio of ARP packets. This rate is rather low but two

12https://www.ovh.com/world/
13https://dyn.com/

high peaks are noticeable. If we investigate deeper, these peaks
are not the most interesting. However, the zoom on the plot
(bottom figure) highlights small peaks flagged by SPOT (red
circles). The latter are especially created by the Raspberry Pi
activity (the wiretap). It means that netspot is able to detect
low amplitude anomalies that is obviously a paramount feature
for an IDS.

0 200 400 600 800 1000 1200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
A

R
P

p
ac

ke
ts

SPOT threshold Active wiretap attack

600 700 800 900 1000 1100 1200 1300
Time (s)

0.00

0.01

0.02

0.03

0.04
R

at
io

A
R

P
p

ac
ke

ts

z
oo
m

Fig. 10. Monitoring of the ratio of ARP packets (250ms time window) to
detect active wiretap

B. Performances
The simplicity of netspot makes it fast. To check its

performances, we feed a big capture file (2 278 689 packets)
to netspot, varying the number of statistics to monitor.
When netspot processes the file, the current packet parsing
rate can be retrieved. We have noticed that netspot is not
slower once it is calibrated, so the performances take all into
account: the cold start (calibration) and the cruising regime
(flag/update). Figure 11 shows the performances of netspot
on two systems: a classical desktop computer (8 Intel cores
and 8GB RAM) running KUbuntu, and a Raspberry Pi 3B+
(4 cores ARMv7 and 1GB RAM) running Raspbian.

On the desktop, netspot is roughly able to process 500
000 packets a second (with some peaks higher than 1M
packets/s). On the Raspberry, netspot is about ten times
slower with about 50 000 packets/s.

To compare with Kitsune (table I), the latter is able to
process about 40 000 packets/s on a desktop computer and
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Fig. 11. Performances of netspot on two systems according to the number
of monitored statistics

about 5 000 packets/s on a Raspberry Pi (performances are
taken from their experiments as their own C++ implementation
is not publicly available). On rather equivalent configurations
netspot is therefore 10× faster than Kitsune. To compare
with a signature-base IDS, we also run Suricata on the
same capture file with default rules14 (20434 signatures). On
the desktop computer (there is no release of Suricata
targeting a Raspberry Pi), Suricata analyzes the whole
capture ('2M packets) in about 5s, so it leads to an average
packet rate of 400 000 packets/s.

Platform Suricata Kitsune Netspot

Desktop 400 000 40 000 500 000
Raspberry Pi 3B+ n/a 5 000 50 000

TABLE I
AVERAGE NUMBER OF PACKETS PROCESSED PER SECOND

In a word, netspot is about ten times faster than the
state-of-the-art in network anomaly detection while compa-
rable with well-proven methods (signature-based IDS). This
efficiency has to be balanced with the accuracy of the tool.
While UNADA and Kitsune are able to detect individually
attack packets, netspot is more efficient but only flags a
window containing possible attacks. An analysis is required
in a second time to identify alarm packets. We think that
this efficiency/information tradeoff is very important. Finally,
the accuracy of the probability parameter of SPOT makes
netspot more convenient to install and configure. The fact
that it is automatically adapted to the network traffic also
makes it more easier to deploy and integrate into an existant
information system. It does not need to be retrained for each
new printer we install.

V. CONCLUSION

Applying ML/DM techniques to intrusion detection is a
very hard task since goals are not clear and relevant data are

14A python tool allows to update the rules, see https://github.com/OISF/
suricata-update

lacking. netspot is a new simple IDS embedding statistical
learning. Its approach is completely different from the previous
works. It has a simple design with a powerful detection engine
based on both expertise (network statistics) and anomaly detec-
tion (SPOT). Indeed, through some experiments we show that
it is able to detect real-world cyber-attacks. This is obviously
not the ultimate solution to detect all the zero-day attacks but a
new component, providing behavioral information, which can
be integrated in a more general monitoring system.
netspot is still under active development as many im-

provements are possible: on the performance side one may
have a look to more efficient ways to parse packet metadata
(like PF RING15 or XDP [14]). On the monitoring side, one
may naturally implement other counters and statistics. We
hope that it could be a modest but credible example of practical
anomaly-based NIDS.
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